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Abstract

We will analyze indirect weighted voting systems as the Council of
the European Union and examine fair distributions of voting weights
for the delegates, representing voting bodies of size n1, . . . , nm, ap-
plying a mixed fairness model. We will see that using a specific quota
jointly with mixed voting weights yields a concordance of voting powers
and voting weights. We will prove this result and furthermore examine
other fairness concepts for the Council of Ministers in the European
Union.

1 Motivation

The central question when designing indirect voting systems is to find a fair
allocation of the voting weights for all members. Unfortunately the concept
of fairness is a rather subjective perception. Therefore, some reasonable and
objective definitions are necessary. In addition, the fact that voting weights
in general do not represent voting power complicates the characterization of
fairness. Therefore, it is indispensable that we foremost introduce the theory
of power measurement in section 2. Having introduced these fundamentals,
we will give an overview of existing fairness ideas in section 3:

With regard to the “one man, one vote” principle, the well-known re-
sult of L.S. Penrose states that the a priori voting power of a delegate has
to be proportional to

√
ni for all i = 1, . . . ,m. Following on this theory,

W. S lomczyński and K. Życzkowski showed with the Jagiellonian Compro-
mise, that assigning the voting weights to wi =

√
ni/
∑m

j=1
√
nj and using

an optimal quota ensures the correspondence of voting weight and voting
power. On the other hand the “one state, one vote” principle suggests the
same treating of each state. To fulfill this objective, all voting weights have

1This paper is to be presented at the Voting Power in Practice Workshop at the Uni-
versity of Warwick, 14-16 July 2009, sponsored by The Leverhulme Trust (Grant F/07-
004/AJ).
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to be equal, which provides equal voting powers for each state independent
from the chosen quota.

In section 4 we will use the ideas of A. Laruelle and M. Widgrén and
consider a fairness model which combines these two fairness principles and
assigns each delegate the mixed voting weight wi(c) = cwi + (1 − c) 1

m for
c ∈ (0.5, 1]. Note that this is a convex combination of the voting weights from
above2. Furthermore, we will derive and analyze such a mixed model in all
details, using the Council of Ministers of the European as our main example.
We will see in section 4 and prove in section 5 that a simultaneous application
of the quota q(c) = 1

2

(
1 +

√∑
wi(c)2

)
will lead to a concordance of the

voting power of each delegate and the mixed voting weight wi(c).
Our findings correspond perfectly with the existing theory, however pro-

vide an even more general result, since for example the Jagiellonian Com-
promise is a special case of our mode with c = 1.

2 Measurement of Power

To measure voting power, a game theoretic approach has emerged to be
useful to define political or economic bodies as a mathematical model. The
theory of simple (voting) games was developed by von Neumann and Mor-
genstern in 1944 [14] and then used by Felsenthal and Machover [5] in the
context of measuring power in political and social sciences. In the political
bodies that we will consider, we allow different voting weights for the par-
ticipants, and therefore will use the concept of weighted voting games which
is a special case of simple voting games.

For a formal definition of this situation, let N = {1, . . . n} be a finite and
nonempty set of size n, called the assembly. The members of the assembly
N are the voters or players and any set of voters S ⊆ N is called a coalition.
Each member i ∈ N is assigned a voting weight wi and furthermore, the
weight of a coalition S is denoted by w(S) =

∑
j∈S wj . A coalition S is said

to be winning if its weight is at least a given quota q ∈ [0,
∑

j∈N wj ], that is
w(S) ≥ q. Otherwise S is said to be loosing. We will use the well established
notation [q;w1, w2, . . . , wn] for weighted voting games. The corresponding
simple voting gameW = {S ⊆ N : w(S) ≥ q} is the collection of all winning
coalitions.

2The necessity to restrict the domain of c follows from the fact that the weight, given
to the quota independent principle, is less that 50%, because we want the resulting model
to be quota dependant.
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Now, having defined this mathematical model, we want to quantify the
power of each voter in the game [q;w1, w2, . . . , wn]. There are many existent
methods for measuring power, yet many are not applicable to the political
sciences. For a substantial overview and discussion of these methods see
Felsenthal and Machover [5].

We are interested in the influence of a member’s vote on the outcome
of a decision. Penrose (1946) [16], Banzhaf (1965) [1], and Coleman (1986)
[3] have independently proposed power measures which address this issue
using a probabilistic approach, where they interpret voting power as the
probability that a voter is decisive in a ballot.

For their approach it is essential to define an appropriate probability
space and analyze the corresponding assumptions. Therefore, let Ω be the
space of all possible proposals. For the Council of Ministers of the European
Union it is reasonable to not consider abstentions, and so each voter has to
vote either “yes” or “no” for a proposal ω ∈ Ω3. We will code a “yes” with
the number 1 and a “no” with -1 and thus, a configuration or division of
the assembly for a proposal ω ∈ Ω is an n-tuple from the space {−1, 1}n.
As our underlying probability space we will consider the Bernoulli model
Bn, where each bipartition b ∈ {−1, 1}n has the same probability, namely
P[b] = 1

2n .
The interpretation of Bn is that (a) all n voters cast their vote indepen-

dently from each other, (b) they vote “yes” and “no” with equal probability
of 1

2 and (c) all coalitions are equally likely. While initially these assumptions
seem to be rather restrictive, we will now explain, why they are reasonable
for our applications. Our goal is to measure the a priori power of each voter
assigned to him by the structure of the game W. Therefore, for designing a
formal voting system, we do not want to take personal interests into account
and thus power measurement has to be independent of the voting behav-
ior. Hence, this validates the independence assumption (a). There are also
various explanations why we may assume condition (b), that is equal prob-
abilities for voting either “yes” or “no”. One such explanation is that for
every proposal ω ∈ Ω there is a counter-proposal ω̄ ∈ Ω such that a rational
participant would vote antipodal for ω and ω̄ and thus the probability of
voting “yes” for a random proposal chosen from all possible proposals should
be equal to 1

2 . The last assumption (c) follows directly from the assumptions
(a) and (b). These assumptions are further discussed by Leech [9] as well as
Felsenthal and Machover [5].

3To include abstentions one can introduce ternary weighted voting games, see Lindner
[11].
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Now, we define the random variable Xi : Ω→ R+
0 for all i ∈ N where

Xi(ω) =

{
wi if player i votes in favor of the proposal ω
0 if player i votes against the proposal ω

.

According to the definition of the underlying probability space and the cor-
responding assumptions, which were discussed above, these random vari-
ables are mutually independent. Furthermore we have for all i ∈ N that
P[Xi = wi] = P[Xi = 0] = 1

2 and E[Xi] = wi
2 and Var[Xi] = w2

i
4 .

Next we define for all i ∈ N and ω ∈ Ω the random variable

Y¬i(ω) =
n∑
j=1

Xj(ω)−Xi(ω) =
n∑

j=1,j 6=i
Xj(ω),

where µi := E[Y¬i] = 1−wi
2 and σ2

i := Var[Y¬i] =
(∑n

j=1

w2
j

4

)
− w2

i
4 . Hence, a

voter i can change the outcome of the decision, pertaining a proposal ω ∈ Ω
if

Y¬i(ω) < q but Y¬i(ω) + wi ≥ q.

The absolute (Banzhaf) voting power ψi[W] of a voter i ∈ N in the simple
voting gameW is defined as the probability that he is decisive and therefore,

ψi[W] = P[q − wi ≤ Y¬i < q].

Various enumerative methods exist to calculate these probabilities. How-
ever, the running time grows exponentially with the number of players n and
is O(n2n) in the worst case. One can reduce this complexity by using gen-
erating functions, but as these functions are still highly dependant on n,
this method becomes very slow as well (Bilbao et al. [2]). Furthermore, it
is not possible to define an explicit function for the calculation of ψi[W],
which makes the application circuitous and intransparent. To avoid these
disadvantages it is therefore helpful to find approximate formulae for the
probabilities of interest.

The key to gain such formulae is a normal approximation of the random
variables Y¬i for i ∈ N . Owen (1975) [15] and Merrill (1982) [13] were the
first to use this concept. In 2007, Feix et al. [4] provided a more rigorous
study of the normal approximation for the Council of Ministers of the Eu-
ropean Union. They stated different general conditions for the application
of the normal approximation, pointed out that these are fulfilled for this

4



special case and verified their claim heuristically by comparing the graph of
the density of the normal distribution to the histogram of all possible values
of Y¬i. The normal approximation is pertinent as long as (a) the number n
of all voters is large enough, (b) the voting weights are sufficiently scattered
such that all 2n configurations provide a variety of different weights and (c)
maxi=1,...,nwi <<

√∑n
j=1w

2
j (S lomczyński, Życzkowski [17] and Lindner,

Machover [12]).

Given that the necessary conditions are valid, we have that Y¬i−µi
σi

ap-
proximately follows a standard normal distribution with the cumulative dis-
tribution function Φ. Let x := q− 1

2 be the portion of the threshold q which
exceeds the majority quota of 50%, then

ψi[W] = P

[
q − wi − µi

σi
≤ Y¬i − µi

σi
<
q − µi
σi

]
≈ Φ

[
1
2 + x− wi − (1

2 −
1
2wi)

σi

]
− Φ

[
1
2 + x− (1

2 −
1
2wi)

σi

]

= Φ

[
x+ 1

2wi

σi

]
− Φ

[
x− 1

2wi

σi

]

=
∫ x+1

2wi
σi

x− 1
2wi
σi

ϕ(t)dt (1)

Since we have required that maxi=1,...,nwi <<
√∑n

j=1w
2
j it follows that

1
2
wi
σi

<< 1 and hence, the integration area in (1) is concentrated around
the point x

σi
. This allows a further approximation of the absolute Banzhaf

power

ψi[W] ≈ ϕ
(
x

σi

)
wi
σi
. (2)

Finally, it is important to note that for a better comparison of vot-
ing powers between members of a voting body, it is helpful to consider a
normalized or relative measure of power, rather than the absolute values.
Therefore, we will refer to

βi[W] =
ψi[W]∑n
j=1 ψj [W]

as the share of (Banzhaf) voting power or the relative (Banzhaf) voting
power of voter i.
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3 Different Fairness Concepts

In this section we will consider two-stage, indirect voting systems. First,
the population of each member state elects a delegate who, in a second step,
will represent his state in a superordinated voting body. A classic example
for such a system is the Council of Ministers of the European Union.

Let V, the council, be the second stage of such an indirect voting sys-
tem which is a weighted voting game among the designated delegates j ∈
{1, . . . ,m}. The election of these delegates in the first stage is modeled
in each member state by the simple voting games W1, . . . ,Wm. Then the
composite of W1, . . . ,Wm under V is denoted by W := V[W1, . . . ,Wm] and
represents an indirect voting system. The assembly N of this composite
game W is the union of the assemblies N1, . . . , Nm of the simple voting
games W1, . . . ,Wn (N =

⋃m
i=1Ni).

Since all members of N vote independently from each other, we can
guarantee that the delegates vote independently as well4. Furthermore, we
need the constraints that the assemblies N1, . . . , Nm are disjoint and that all
W1, . . . ,Wm are simple majority games. If we denote the size of Ni as ni this
means that for all i ∈ {1, . . . ,m} the quota is equal to ni

2 +ε for a sufficiently
small ε > 0. We further require that each delegate j ∈ {1, . . . ,m} repre-
sents the opinion of the majority in the weighted voting game V. Hence, for
the composite game W, all winning coalitions S ∈ W have to satisfy that
{j ∈ {1, . . . ,m} : S ∩Nj ∈ Wj} ∈ V.

Next, while analyzing such an indirect voting system, we must address
the question of fairness. Although this is a rather subjective task, it is clear
that an appropriate choice of voting weights and quota is essential to answer
this question.

Penrose’s Square-Root Rule (PSQRR)

The most reasonable and widely accepted fairness principal requires that
every member i ∈ N =

⋃m
i=j Nj has the same power to influence a decision.

This idea originates from Penrose (1946) [16] and is also known as the “One
person, one vote” (OPOV) principle. The theorem of Penrose’s Square-Root
Rule provides necessary and sufficient conditions to fulfill this fairness idea
in a two-stage decision-making process.

For all voters i ∈ N , the indirect, absolute Banzhaf powers ψi[W] are
4Note that this follows from the assumptions in section 2.
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equal (with negligible error) if and only if the absolute Banzhaf powers ψj [V]
of all delegates j ∈ {1, . . . ,m} in the council are proportional to √nj . This
means that for all delegates j ∈ {1, . . . ,m} we have to require that the
relative voting power satisfies

βj [V] =
√
nj∑n

i=1

√
ni
.

Penrose did not provide a rigorous proof of his Square-Root Rule, rather
he gave a semi-heuristic argument. For a complete proof see Felsenthal and
Machover [5]. This proof utilizes Stirling’s approximation for factorials and
therefore it is necessary that all nj , j ∈ {1, . . . ,m}, are large enough such
that the corresponding approximation error is negligible. This demand is
clearly met by the Council of Ministers of the European Union5.

Unfortunately, Penrose’s Square-Root Rule has an essential problem due
to its conditions on the voting powers rather than the voting weights. The
procedure of finding the corresponding voting weights, given the desired
voting powers, is called the inverse problem and is to our best knowledge
not yet studied thoroughly. Nevertheless, Leech [10] developed an iterative
algorithm to find an approximation of the desired voting weights which can
help to solve this issue.

Jagiellonian Compromise (JC)

The Jagiellonian Compromise sought to create a transparent, simple and
easily extendible voting system that satisfies Penrose’s Square-Root Rule.
Although Penrose provided instructions on how to designate the voting pow-
ers, the authors S lomczyński and Życzkowski ([18, 19]) set all voting weights
wj equal to

√
nj∑m

i=1

√
ni

and hence proportional to √nj . First, they showed nu-
merically that there exists a quota q∗JC such that all voting weights and their
corresponding voting powers coincide. Later they derived mathematically a
formula for this critical point [17],:

q∗JC =
1
2

1 +

√√√√ m∑
j=1

w2
j

 =
1
2

1 +

√∑m
j=1 nj∑m

j=1
√
nj

 . (3)

Due to the structure of this quota formula the Jagiellonian Compromise is
also called the double square root voting system.

5The smallest state Malta has a population of about 400.000, which is large enough for
an accurate approximation.
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One state, one vote (OSOV)

A seemingly naive, yet justified fairness concept is to consider the Euro-
pean Union as an association of totally independent states, where each state
is treated equally. Under this model, all states should have the same prob-
ability of being decisive and thus, have the same voting power (“One state,
one vote”, [8]). In terms of relative power this means that βj [W] = 1

m for
all j ∈ {1, . . . ,m}. This can be easily achieved by assigning the same voting
power to each state. Note that such a unitary system is totally independent
of the quota q.

Mixed fairness model (MFM)

Laruelle and Widgrén combine the fairness concepts from above: “If
the EU is a federal state, each state must be treated in accordance to a
weighted average between the two extreme principles (“One man, one vote”
and “One state, one vote”)”, [8]. In order to bring these two presented
fairness ideas together, it is appropriate to consider a convex combination.
In such a corresponding mixed fairness model the relative Banzhaf power
(4) is allocated to each member in the corresponding game Wc.

βi[Wc] = c ·
√
nj∑m

i=1

√
ni

+ (1− c) · 1
m
, c ∈ [0, 1] (4)

The mixture parameter c represents the weight that is given to the “One
person, one vote” idea. We will analyze such mixed fairness models more
closely in the following two sections.

Minimizing the mean majority deficit (Min. MMD)

Finally, we present a fairness principle developed by Felsenthal and Ma-
chover to minimize the mean majority deficit. If for a coalition S ∈ N we
have that |S| − |N \S| ≥ 0 6, then the majority deficit is equal to 0. Other-
wise, we have a positive majority deficit equal to |N \ S| − |S| = |N | − 2|S|.

A fair voting system should minimize the expected discrepancy which
we denote as the mean majority deficit ∆[W]. Felsenthal and Machover [6]
proved in [6] that

∆[W] =

∑m
j=1 ψj [W]− k

2n−1 ·
(
n
k

)
2

(5)

6|S| is the notation for the size of S and N \ S is the set N without the elements of S.

8



where k =
⌊
n
2

⌋
+ 1 is the least integer greater than n

2 . For given voting
weights w1, . . . , wm in the council, ∆[W] will be minimal if and only if the

quota is chosen as
∑m
j=1 wj

2 + ε for a sufficiently small ε > 0. However, this
means that for given voting weights the simple majority game leads to a
minimum of ∆[W] and therefore, it is considered to be the most fair accord-
ing to the fairness idea of the minimal mean majority deficit. Finally, note
that we can gain information about fairness with respect to the presented
idea by comparing the given mean majority deficit of a given voting system
to its possible minimal value.

4 Council of Ministers and Fairness

The current basis for the European political system is the Treaty of Nice of
2001. The treaty assigns the current voting weights for each member state
in the Council of the Ministers, as shown in the second column of table 1.
Although a “triple majority” must be satisfied in order that a proposal
will be passed, a mathematical analysis shows that only one of the three
conditions is significant. Except for a very small number of the 2m possible
cases7, a proposal will be accepted if at least 255 votes (that is 73,9%) will
be cast in favor of it [7]. Columns three and four of table 1 show the relative
voting weights and the relative Banzhaf voting powers. It can be observed
that these values are far from being concordant.

To illustrate the Jagiellonian Compromise for the Council of Ministers
we use the current population of all member states and calculate the relative
square roots (

√
nj∑m

i=1

√
ni

), which not only yield the relative voting weights but
also the corresponding relative Banzhaf powers if the special quota q∗JC is
used (see column five and six of table 1). The absolute values of the dis-
crepancies between the voting powers of the current voting system and the
Jagiellonian Compromise can be found in the last column of table 1 and are
illustrated in figure 1. We can observe that the four largest countries are
under-represented, whereas the smallest four countries are over-represented.
However, we can not detect any concrete structure for the medium-sized
states, as half of them are entitled more power and half of them less. Poland
profits the most from the current system, while Germany is the most disad-
vantaged.

7This number is in fact so small, that we will not see any effect of the other two
conditions on the voting powers, when using the same rounding as in tables 1 and 2.
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Discrepancy of relative voting power: Nice compared with JC
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Figure 1: Discrepancies of relative voting powers between the current vot-
ing weights and the optimal voting weights according to the Jagiellonian
Compromise

From figure 1 we can deduce that the voting system in the Council of
Ministers of the European Union according to the Treaty of Nice does not
satisfy the fairness principal of “One person, one vote”, nor the “One state,
one vote” idea, where each state should have equal power. At the end of
this section we will additionally show that the current voting system is also
unfair according to the principal of minimal mean majority deficit. Hence,
it is of interest to determine if the voting system of the Council of Ministers
is fair according to a mixed fairness model and determine the corresponding
mixture parameter c∗.

Now, we apply the same idea used by Laruelle and Widgrén used to
identify a mixed model for the European Union with 15 member states with
respect to two different voting rules [8]. We will provide an estimation of
c∗ for the current situation in the European Union with 27 member states.
Therefore, we will use a simple linear regression on the weighted voting game
given by the Treaty of Nice WNice. The current voting powers according to
the Treaty of Nice will serve as the dependent variables, and the square root
shares of the population

√
nj∑m

i=1

√
ni

as the independent variables. Thus, the
mixture parameter c∗ is the regression parameter. As a result we obtain
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that c∗=0,91961 and hence:

βi[WNice] = 0, 91961 ·
√
ni∑n

j=1
√
nj

+ 0, 08039 · 1
27

(6)

Note that the value of the regression parameter is significantly larger
than the values that Laruelle and Widgrén obtained in 1998 for the European
Union with only 15 member states8. Thus, with the enlargement of the
European Union, there has been an apparent shift in favor of the “One
person, one vote” principle.
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Figure 2: Regression model: The regression line shows the allocation of
the voting powers, which correspond to the mixed fairness model with the
mixture parameter c∗ = 0, 919612; The dots represent the current situation
according the Treaty of Nice.

The standard error from the estimation of c∗ is equal to 0,035075, the
standard error from estimating the intercept is 0,001563 and we have an

8These values are 0,79 for the qualified majority and 0,6 for the qualified majority with
at least 10 countries being in favor of a proposal.
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overall residual standard error of 0,004511. From examining the regression
line in figure 2 and the fact that R2 = 0,9649, it appears that we have de-
rived a satisfying approximation. Except for the obvious outliers Germany,
Spain and Poland, all values are well described by the linear formula (6),
and therefore we can argue that from a statistical point of view the current
distribution of voting powers follows a mixed fairness model with the weight
c∗ =0,919612 assigned to the “One person, one vote” principle.

DE FR UK IT ES PL RO NL EL PT BE CR HU SE AT BG DK SK FI IE LT LV SI EE CY LU MT

Relative residual errors from the linear regression model
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Figure 3: Visualization of the relative residual errors:
(current voting power - fair voting power)/current voting power.

Nevertheless, looking at the relative errors with respect to each member
state we can detect significant over- and under-representations, especially for
the small member states (compare figure 3). Hence, although statistically
there is no evidence that the current distribution of voting weights is unfair
according the mixed model (6), the relative error analysis emphasizes that it
is still rather inappropriate. Therefore, before performing further analysis,
one should correct the obvious discrepancies and choose the voting powers
according to the regression model βi[Wc∗ ] = 0, 91961·

√
ni∑n

j=1
√
nj

+0, 08039· 1
27 .

The problem with the mixed fairness model is similar to the problem
encountered with Penrose’s Square-Root Rule, in which we have conditions
on voting powers rather than voting weights. Therefore, we apply the same

13



idea as S lomczyński and Życzkowski [19] and first set all the relative voting
weights to wi(c∗) = 0, 91961 ·

√
ni∑n

j=1
√
nj

+ 0, 08039 · 1
27 , which correspond

to the desired values of βi[Wc∗ ] for all i ∈ {1, . . . ,m}. Given these voting
weights, we calculate the relative voting powers with respect to a varying
quota. We desire to show that for a special quota, voting weights and voting
power will coincide. For a visualization of this procedure, we will display the
ratios of relative voting powers to voting weights for all 27 member states
in figure 4. The fairness idea of the mixed fairness model is met if for all
member states we have that this ratio is equal to 1. Fortunately, for the
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Figure 4: Ratio of relative voting power to relative voting weight with re-
spect to the quota for all 27 member states, where the voting weights are
set to 0, 91961 ·

√
ni∑n

j=1
√
nj

+ 0, 08039 · 1
27 .

special quota q∗ = 0, 6102, all 27 curves meet and additionally all ratios are
approximately equal to 1 (figure 4). Hence, the fairness principle is satisfied
simultaneously for all 27 member states.

To support this observation, we define the squared cumulative error SCE,
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Figure 5: Development of the squared cumulative error SCE with respect
to the quota. A minimal error value is attained in q∗ = 0, 6102.

with respect to the quota q:

SCE(q) =
m∑
j=1

(
βi[Wc∗ ](q)
wi(c∗)

− 1
)2

. (7)

Figure 5 depicts this error measure. We can detect a minimum, and
hence optimal value, q∗ = 0, 6102. In the next section, we will show that this
optimal quota q∗ is a function of c and that we can calculate this optimum
via the formula:

q∗(c) =
1
2

(
1 +

√∑
wi(c)2

)
. (8)

For a better overview, we now summarize our results in table 2. The sec-
ond column displays the relative voting weights which we have defined as the
fair shares of voting powers in the mixed fairness model with c∗ = 0,919612.
Using the quota q∗(c∗) = 0, 6102, which we gain from (8), we obtain the
relative Banzhaf voting powers shown in column three. As column four of
table 2 illustrates, the absolute differences between voting powers and voting
weights are rather negligible. However, we can observe a slight shift in favor
of the small-sized member states to the expense of the large-sized member
states. The medium-sized states are well represented by our approach. As
a basis for the squared cumulative error, the difference between the ratio
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EU member state wi(c∗) βi[Wc∗ ](q∗) βi[Wc∗ ](q∗)− wi(c∗) βi[Wc∗ ](q
∗)

wi(c∗)
− 1

Germany 8,98% 8,91% -0,07% -0,007
France 7,91% 7,87% -0,04% -0,005
United Kingdom 7,76% 7,72% -0,04% -0,005
Italy 7,65% 7,62% -0,04% -0,005
Spain 6,68% 6,65% -0,03% -0,004
Poland 6,21% 6,18% -0,02% -0,004
Romania 4,74% 4,73% -0,01% -0,003
Netherlands 4,17% 4,16% -0,01% -0,002
Greece 3,50% 3,50% 0,00% 0,000
Portugal 3,41% 3,41% 0,00% 0,000
Belgium 3,41% 3,41% 0,00% 0,000
Czech Republic 3,37% 3,37% 0,00% 0,000
Hungary 3,33% 3,34% 0,00% 0,001
Sweden 3,19% 3,19% 0,00% 0,001
Austria 3,05% 3,06% 0,01% 0,002
Bulgaria 2,95% 2,96% 0,01% 0,002
Denmark 2,53% 2,54% 0,01% 0,005
Slovakia 2,52% 2,53% 0,01% 0,005
Finland 2,50% 2,51% 0,01% 0,005
Ireland 2,29% 2,30% 0,02% 0,007
Lithuania 2,06% 2,08% 0,02% 0,009
Latvia 1,74% 1,76% 0,02% 0,013
Slovenia 1,65% 1,68% 0,02% 0,015
Estonia 1,41% 1,43% 0,03% 0,019
Cyprus 1,14% 1,17% 0,03% 0,026
Luxembourg 0,96% 0,99% 0,03% 0,034
Malta 0,91% 0,94% 0,03% 0,036

Table 2: Comparison of voting weights wi(c∗) and voting powers βi[Wc∗ ](q)
for the optimal quota q∗(c∗) = 0, 6102, where c∗ = 0,919612.
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βi[Wc∗ ](q∗)/wi(c∗) and 1 is stated for all i = 1, . . . , 27. The squared cumu-
lative error SCE(q∗(c∗)) of the analyzed voting system is equal to 0,0043
and is therefore insignificant, yet it does not vanish completely. Hence, we
can conclude that using the appropriate quota and slightly adjusted voting
weights will lead to a fair voting system, in which the two contrary princi-
pals “One person, one vote” and “One state, one vote” are both taken into
account via the presented convex combination.

Voting system Mean majority deficit Ratio
Treaty of Nice (TN) 3,9745 10,1293
Minimal MMD with TN weights 0,3924
Jagiellonian Compromise (JC) 1,0294 2,7723
Minimal MMD with JC weights 0,3713
Mixed fairness model (MFM) 0,9754 3,0271
Minimal MMD with MFM weights 0,3222

Table 3: Mean majority deficit: Comparison of the mean majority deficit of
the voting system according to (a) the Treaty of Nice, (b) the Jagiellonian
Compromise and (c) the observed mixed fairness model to their possible
minimal values.

Finally, we want to analyze and compare the mean majority deficits
of the current situation afforded by the Treaty of Nice, the Jagiellonian
Compromise, and the derived mixed fairness model from this section. The
minimal value for the expected majority deficit for the voting weights from
the Treaty of Nice is equal to 0,3924. A comparison of this value to the
current mean majority deficit, shows that it is 10 times higher than the
presented possible minimum. This is due to the relatively high quota of
73,9% that is applied in the Council of Ministers of the European Union.
The same comparison for the Jagiellonian Compromise establishes a less
drastic disparity, since the mean majority deficit is only about 2,77 times
higher than the possible minimum for the given weights. The same is true
for the adapted mixed fairness model. Nevertheless, the ratio of about 3,03
is slightly higher than for the Jagiellonian Compromise. One can interpret
this fact as a trade-off for the adjustment of the voting weights according
to the desired mixed fairness model. In general, we can conclude that the
Jagiellonian Compromise and the mixed fairness model are in better compli-
ance with the fairness principle of the minimal mean majority deficit than
the current situation.
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5 Optimal Quota

Now, we want to prove that the optimal quota for a mixed fairness model
with the mixture parameter c is given by (8), that is

q∗(c) =
1
2

(
1 +

√∑
wi(c)2

)
.

However, we first have to remark that we must to restrict the domain of c to
(0.5, 1]. The necessity of this constraint derives from the following reasoning.
In the mixed fairness model we assign the weight c to the quota dependent
principle9 and the weight 1−c to the quota independent idea10. As presented
in the previous section, we desire to create a voting system which yields a
similar quota dependency as for the Jagiellonian Compromise, and therefore
it is clear that we only can achieve such a result if the quota dependent idea
receives a higher weight than the quota independent principle.

Now, let c ∈ (0.5, 1] be a fixed value and hence the voting weights wj(c)
for all j ∈ {1, . . . ,m} will not vary in the following calculations. Our goal is
to find a quota q∗(c) such that we obtain βj(q

∗(c))
wj(c)

≈ 1 for all j ∈ {1, . . . ,m},
and therefore all of these ratios must to be equal to each other. We will first
perform a pairwise comparison for any two players j and k with wj(c) >
wk(c)11 and hence σ2

j ≤ σ2
k. Using the notation x∗j,k := q∗j,k −

1
2 , where q∗j,k

is the optimal quota such that player j and k have the same ratios of voting
weight to voting power, we obtain

βj(q∗j,k)
wj(c)

=
βk(q∗j,k)
wk(c)

⇔ wk(c)
wj(c)

=
βk(q∗j,k)
βj(q∗j,k)

=
ψk(q∗j,k)
ψj(q∗j,k)

(2)
≈

wk(c)
σk
wj(c)
σj

·
ϕ
(
x∗j,k
σk

)
ϕ
(
x∗j,k
σj

)
⇔ σj

σk
exp

(
x∗

2

j,k

2

(
1
σ2
j

− 1
σ2
k

))
= 1 (9)

9That is the Jagiellonian Compromise which satisfies the ”One person, one vote” con-
dition.

10That is the unitary voting system with equal voting weights for all players. It produces
the same voting power for all voters and for all cogitable quotas.

11If we have that wj(c) = wk(c) for j 6= k, then trivially the ratios of voting power and
voting weight are equal to each other, regardless which quota is applied.
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Solving equation (9) for x∗j,k we get

x∗j,k =

√√√√√√ ln
(
σ2
k

σ2
j

)
1
σ2
j
− 1

σ2
k

=

√√√√ 4σ2
jσ

2
k

wj(c)2 − wk(c)2
· ln

(
1 +

wj(c)2 − wk(c)2
4σ2

j

)
(10)

Recall that a requirement for the validation of this approximation was that

maxi=1,...,nwi(c) <<
√∑n

j=1wj(c)2, and therefore we have that
1
2
wi(c)

σi
<<

1. Thus, wj(c)
2−wk(c)2
4σ2
j

> 0 will be very close to 0 such that we can apply the

approximation ln(1 + ε) ≈ ε, which follows from Taylor’s theorem. Hence,
we can further simplify

x∗j,k ≈

√
4σ2

jσ
2
k

wj(c)2 − wk(c)2
· wj(c)

2 − wk(c)2
4σ2

j

=
√
σ2
k

=

√√√√1
4

m∑
i=1

wi(c)2 −
1
4
wk(c)2 ≈

1
2

√√√√ m∑
i=1

wi(c)2. (11)

The last approximation in (11) follows again from the fact that
maxi=1,...,nw

2
i (c) <<

∑n
j=1wj(c)

2. Therefore, we obtain the result that
for any pairs j and k, the ratios of relative voting power and relative vot-
ing weight are approximately equal if we choose the quota q∗j,k = q∗ =
1
2

(
1 +

√∑
wi(c)2

)
, which is not dependent on the choice of j and k. As we

consider relative values for voting power and voting weight, we can deduce
that with the right choice of the quota, all ratios will be approximately equal
to 1.

6 Conclusion and Future Directions

We have analyzed different fairness principles for the current voting system
in the Council of Ministers in the European Union. We have seen that the
allocation of the voting weights according to the Treaty of Nice is not fair,
but fairness can be achieved by looking at a combination of two opposed
ideas. With a special quota one can achieve concordance between voting
weights and voting powers. This leads to a simple and transparent voting
system, since the voting weights (which were set to the desired values of
the relative voting power) give complete information about the allocation of

19



voting power. Furthermore the mixed fairness model is easily extendible if
new member states join the existing voting system.

Note that the combination of mixed fairness models together with a
special quota is a generalization of the existing theory. For example, the
Jagiellonian Compromise is a special case of such a mixed fairness model,
equipped with the mixture parameter c = 1. Furthermore, our formula (8)
converges towards 1

2 if the number m of voters gets infinitely large. This has
two positive effects. Firstly, we have that with a growing number of players,
the mean majority deficit will decline towards its possible minimum. And
secondly, this observation is consistent with Penrose Limit Theorem [12].

Finally, we must note that the presented mixed fairness model is not
applicable to all existing voting systems. This is for instance the case for
the House of Representatives of the United States of America. The reason
for this is that a linear regression model is not appropriate in this case.
Thus, we should develop a more general mixed fairness model which also
takes other fairness ideas like the minimization of the mean majority deficit
into account.
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