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20.1 INTRODUCTION

It is well known that the analysis of complex geophysical time series is a difficult task and
that recent developments in non-linear dynamic system theory have suggested a variety of
new approaches including prediction techniques (Casdagli, 1989; Farmer and Sidorowich,
1988). In addition to their obvious applications, these methods may be used to test implicit
assumptions made in alternative techniques (e.g. that the series is a realization of a linear
stochastic process) through the method of surrogate data (Smith. 1992; Theiler er al., 1992).
The comparison with surrogatce scrics provides a quantitative measure of the quality of different
models of the data and, in turn, an indication of whether the underlying dynamics is linear
or non-linear, deterministic or stochastic.

This chapter illustrates non-lincar prediction by way of two-dimensional interpolation in
a toy model of particulate transport, and then applies it to the prediction of observational
data. The particulate transport model used, one of the first to show the effects of chaotic
advection, is used for spatial and temporal predictions. A preliminary analysis of velocity
data collected from the River Severn concludes the chapter. The results of this analysis reject
the hypothesis that this signal is linear red noise, yet no evidence of low dimensional
determinism is obtained. Several suggestions for the design of future data collection are
proposed.

20.2 STOMMEL FLOW

In this section we introduce non-linear prediction with a simple two-dimensional time-
dependent flow which can exhibit chaotic advection (Smith, 1984; 1987; Smith and Spiegel,
1985). The flow was previously considered as a model for the motion of particles suspended
in a time-dependent flow, a situation of interest in many areas of geophysics (Huppert, 1984;
Maxey and Corrsin, 1985). By introducing periodic time dependence, we generalize the
laminar flow originally considered by Stommel (1949} to allow chaotic advection. In the chaotic
regime, particles may take much longer to traverse a scries of cells than the retention time
indicated by dimensional calculations. Related flows have been investigated experimentally
by Tooby, Wick and Isaacs (1977), Gollub and Solomon (1987) and Chaiken er al. (1987).
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384 MIXING AND TRANSPORT IN THE ENVIRONMENT
20.2.1 Steady flow

Intrigued by the observation that the yield of plankton tows taken along the direction of the
wind were more variable than those taken perpendicular to the wind, Stommel (1949)
considered the trajectories of negatively buoyant bodies immersed in steady fluid rolls. If
the fluid motion 1s described by a stream function ¥(x,y,r), then, when particle inertia is
negligible, the particle trajectories also allow a stream function. That is, the trajectories are
solutions of

Liy
v, = UL, (20.1)
dv
y = — QPERD (20.2)
’ dx
where the particle stream function is
Yooy = ¥x,y.0) + v (20.3)

and v, is the Stokes velocity (the terminal velocity of a particle in free fall through a
quiescent, viscous fluid). Stommel considered a two-dimensional, vertical cross-section and
adopted the stream function

Y(x,v) = Asinxsiny (20.4)
Streamlines of this flow are shown in Figure 20.1. The particle stream function is then
Y(x,y) = Asinxsiny + v (20.5)

where x represents the horizontal direction and y the vertical direction. Particle stream lines
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Figure 20.1 Fluid streamlines of the steady flow. Here x is the horizontal axis and y is the vertical
axis; the figure shows a single cell (ie. 0 < v < 7, 0 < v < 27)
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for v, = 0.25 are shown in Figure 20.2. Stommel (1949) conciluded that the flow divided
into two classes: one which swept through vertically stacked cells and another, trapped within
the closed contours, which formed a region of retention in each cell. This model may be
interpreted in a downstream guise (where x is the cross-stream direction and y the dowastream
direction) with the Langmuir cells corresponding to dead zones due to boundary conditions
not explicitly modeled: v, then corresponds to a superimposed downstream velocity. In the
steady flow case, downstream motion is trivial. Dead zones really are dead as there is no
transport across the stream lines, and the streamlines themselves have the simple structure
shown in the figures. We could consider more spatially complicated flows by superimposing
additional structure periodic with half the wavelength of this flow. Repeating the process
at still smaller length scales would yield a tlow similar to the § model (Frisch, Sulem and
Nelkin, 1978). As shown in the following, the particle trajectories from Equation 20.5 are
already fairly intricate when the flow is time dependent.

20.2.2 Time dependent flow

When ¢ is independent of time, topological constraints prevent trajectories from displaying
. chaos. A time-dependent stream function, however, corresponds to a non-autonomous
Hamiltonian system; in this instance the systemn has a three-dimensional phase space and admits
qualitatively different trajectories (see, for example, Mackay and Meiss, 1987). To investigate
this case, consider

A(/) = A()[l i ESin((J)f)] (206)

where e quantifies the strength of the time dependent element of the flow. For e # 0, this
has the immediate effect of detaching the dead zone from the wall; for small e an isolated
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Figure 20.2 Particle streamlines in the steady flow with v = 0.25, A' = |. Again the figure shows
a single cell which may either be considered as one of a series of ve‘mcally stacked cells, or to have
periodic boundary conditions identifying the bottom with the top of the cell
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dead zone(s) persists, but the boundaries can be very complicated: whether or not a particle
will be retained for another period of the flow depends sensitively on its location. We will
consider the case Ay = 1.0, v, = 0.25, w = 27/4.5 and apply periodic boundary conditions
in v, so that particles passing through the bottom of the cell are reintroduced at the top.

This complexity is reflected in Figure 20.3 in the total displacement, 6. of a particle from
its initial position after one period {6 = |x(27/w) — x(0)|]. The concentric contours 1, 2
and 3 within the dead zone reflect stable, roughly circular motion, whereas the oblong contour
5 represents particles which fall out of the cell. Similar contours for longer evolution times
maintain the relatively simple structure within the dead zone. but reveal complex structures
near its boundary as some particles fall repeatedly through cells while their near neighbours
become entrained (temporarily) near the dead zones of other cells. Examining the variation
in residence time of a particle near the dead zone boundary reveals the sensitive dependence
of residence time on initial position.

In the next section, we shall consider the question of interpolation in this field, specifically:
given the initial position of an ensemble of particles and their final position after one period
of the fluid forcing, how can we approximate the final position of some other initial condition
(if the underlying equations are unknown)? First. we consider the results of a long run shown
in Figure 20.4. Here we have plotted the location of a single initial condition (v, = 0.25)
once per cycle of the background forcing and applied periodic boundary conditions identifying
the top and bottom of the cell: this stroboscopic graph is equivalent to a Poincaré section.
The figure sketches the region accessible to migratory particles. Note that within each cell
the dead zone is divided into several disconnected regions; this is typical of Hamiltonian systems
of this form. If a line of particles is introduced (Smith and Spiegel, 1985), it is quickly contorted
into a complex shape that appears to be self-similar; as experimental techniques ot flow
visualization typically rely on tracers (see, for example, Corrsin. 1950), and as material lines
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Figure 20.3 Contours of the displacement after one period as a function of initial position for the case
A, = 1.0, v, = 0.25, @ = 2#/4.5. The fine structure already visible near the centre and bottom of
the cell (contours 2,3.4) becomes much more intricate as the number of periods increases
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in a wrbulent flow are expected to develop into fractal structures, it is interesting to note
that such structures can occur in a periodic laminar flow, leading to the formation of self-
similar distributions. There is nothing turbulent here; the flow 1s smooth but chaotic. Pollutant
dispersal may be more widespread and more concentrated than expected from laminar flows
without requiring turbulent mixing. Additional discussion of this and related flows is given
in Smith and Spiegel (1985), Pasmanter (1987), Smith (1987), Broomhead and Ryrie (1988),
Crisanti er al. (1990: in press), Yu, Grebogi and Ott (1990) and Huppert (1991).

20.2.3 Interpolation of vertical displacement in two dimensions

Consider the problem of interpolating a function s(x) which determined the contours shown
in Figure 20.3. We shall initially consider a global predictor (or map). F(x):R* — R', which
estimates s for any x. First, choose », base points or centers in the two-dimensional space

Cp J =2 Liioully GE R’ (20.7)
We will consider F(x) of the form
Fix) = ¥ Nollx — o) (20.8)

3=

where ¢(r) are radial basis functions (Powell, 1985). We will consider ¢(r) = r’ and

N

o(r) =¢ where the constant is based on a multiple of the average distance between data

T ™

Figure 20.4 Stroboscopic view of a single particle falling for 2% periods with periodic boundary
conditions. Only the upper half of the cell is shown



388 MIXING AND TRANSPORT IN THE ENVIRONMENT
points, dy,. The A; are constants which are determined by observations
Flx;) = s;. 1= 12,...,n (20.9)

where the x; are the initial conditions of the n observations and the s; are their observed
displacements. We shall call the data used in determining the A; the learning set.
Determining the A; corresponds to the solution of the (linear) problem

b = AN (20.10)
where A is a vector of length n. whose jth component is \; and A and b are given by
Aj = wo(x;, — ¢l (20.11)

and
b, = w;s, (20.12)

where i = 1,...n and j = 1,... n. Traditionally, the weights w; reflect the confidence
associated with the ith observation, we shall restrict attention to the case where all w; are
equal, assuming that the errors are independent with equal variance (but note the discussion
in Section 3.2 of Smith. 1992). When there are fewer centres than data points, A is not square
and we are left with a standard least-squares problem of finding a A which minimizes
x> = ||lb — AN*. The solution which also minimizes ||A||* corresponds to

k= A"D (20.13)

where AT is the Moore—Penrose pseudo-inverse of A. Efficient methods to calculate A
are given in Press et al. (1987). Additional discussion of the details of the construction of
this type of predictor is provided by Broomhead and Lowe (1988), Casdagli (1989), Farmer
and Sidorowich (1988) and Smith (1992).

A function F constructed in this way will be called a radial basis function (RBF) predictor.
We shall also consider local linear (and quadratic) interpolation. In all instances the data in
the learning set used to construct the predictor are kept distinct from the test data set on which
it is evaluated. Thus the time series results represent out of sample prediction. Out of sample
statistics are crucial if we are to establish that an RBF predictor is robust in the presence
of noise; RBF predictors can minimize in-sample error by overfitting the noise in the learning
set.

20.2.3.1 Global and local prediction

We now contrast the results of constructing one global predictor for the entire cell with those
from constructing a local predictor for each point of interest based on that point’s near
neighbours. This simple two-dimensional example illustrates qualitative features of global
reconstructions less easily visualized in higher dimensional constructions. Examining contours
of the predictor error as a function of location in the cell shows that the largest prediction
errors occur near the corners where the gradient is greatest; when the data density is low,
global predictors may maintain a smoothness over the cell lost in local predictors. In this
instance, using a grid of 32 X 32 sample points as the learning set, the 32 neighbour local
RBF predictor does a superior job of resolving the details of the flow. When the data density
is very high, local linear predictors should be most accurate; at this data density, however,
local quadratics were found to give the smallest mean absolute error.

The predictions of one local RBF with ¢(r) = r~. one local linear, and one global predictor
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Figure 20.5 Comparison of prediction error profile for (a) global and two 32 neighbour local predictors.
The horizontal axis is the log, of the error balance. The local predictors are (b) local linear and (¢)
RBF with ¢(r) = r¥ with n. = 16

are summarized in the predictor error profiles of Figure 20.5. Each curve shows the fraction
of the out of sample points which can be predicted to within a given (absolute) accuracy:;
for long test sets this should converge to the cumulative probability distribution of the prediction
errors. The local RBF predictor is clearly the best; for example, 50% of its predictions have
an error of less than 27 = 0.004, almost a factor of four less than the corresponding level
for the local linear predictor. Evaluating a predictor with a single measure of an ‘average’
error in the prediction may be misleading when a few per cent of the predictions have very
large errors. In extreme cases this may result in a predictor which is more accurate 90%
of the time having a greater average absolute error. As long as the prediction error profiles
are well separated there is no confusion, but if they cross (as in Figure 20.8), it is important
to ascertain which properties of the predictions are considered the more important when
evaluating predictors; in this instance, different definitions of the error can result in different
‘optimal’ predictors.

20.3 TIME SERIES APPLICATION

20.3.1 Residence times: transition to a Lagrangian frame

In the time-dependent Stommel flow, the velocity components at a fixed position each show
a regular periodic oscillation which is straightforward to predict. We therefore adopt a
Lagrangian reference frame, moving with a particle, to show the practical problems involved
with the prediction of chaotic systems, and consider the series of residence times in each
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cell (defined as the time interval between passages through the lower periodic boundary of
the cell). At first glance, this problem appears far removed from the interpolation problem
presented earlier. On reflection, however, they are seen to be very similar; Casdagli (1989)
and Farmer and Sidorowich (1987; 1988) were the first to make this application to chaotic
time series.

Figures 20.6 and 20.7 are derived from two segments of the trajectory which generated
Figure 20.4; here the residence time in consccutive cells is given. This spiky appearance,
with regions of activity separated by quiescent periods, is common to many observed series
in geophysics and is difficult to predict. This series is extremely varied (more so than can
be shown in these figures): there are stretches of time during which the particle will fall through
dozens of cells without being re-entrained; alternatively, there are cells in which a particle
becomes trapped for a large fraction of the total integration time. Although there can be no
attractors in this Hamiltonian system, the probability density in these ‘reef’ regions where
the particle is temporarily trapped can become fairly large (Meiss, 1986) and may appear
as a strange accumulator (Smith and Spiegel, 1987).

20.3.2 Method of delays

The first step in applying this method of prediction is to reconstruct the time series into a
geometrical framework. [An introduction to this method is given by Broomhead and Jones
(1989).] In many instances, s(z) would be a physical variable measured at regular intervals
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Figure 20.6 Scgment of the scries of time a particle remains in a given cell; the data corresponds to
the same trajectory as the stroboscopic section shown in Figure 20.4. The x axis corresponds to the
ith cell; the residence times in a few thousand cells are shown
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(7.. the sampling time)

s; = s(iry,) 1 = L.2,...,n, (20.14)

In our case a “sampling time’ is exactly what we are trying to predict, and the s, arc taken
as consecutive observations.

A trajectory, x(f). of this system is reconstructed in M dimensions from a time series of
a single observable, s(r), by the method of delays to yield a series of vectors

.Y{.‘ = (.5‘1,‘\‘:7}', R —j(M—1 J} (20. 15)

where j (or j7,) 1s called the delay time. 74. (As noted by a referee, the phrase ‘delay time’
may be misleading in this case, as the subscript 7 relates to the time spent in the ith cell.)
For a deterministic system with phase space dimension M, and a generic observable, this
reconstruction preserves many of the characteristics of the original system for sufficiently
large M (see, for example, Casdagli, 1992; Packard er al., 1980; Sauer, Yorke and Casdagli,
1991; Takens, 1981). As shown in the following, multivariate series can also be considered,
often with significantly shorter time series in terms of the total duration of the experiment.
This is easily understood as multivariate probes can distinguish well separated states in phase
space which appear similar to univariate probes due to projection effects. For example,
combining the phase of the background flow when the particle entered the cell with the
residence time series could improve the predictions significantly more than doubling the length
of the residence time series. It is the information content, not the length of the data set, which
1s more important.

Consider the problem of predicting a fixed distance 7, = & steps into the future. Once
we have the set of observed initial conditions x; and later observations s;.,, the same
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Figure 20.7 Initial segment of the series in the previous figure; only the first 350 residence times are
shown here. Note the change in the scale of the vertical axis



392 MIXING AND TRANSPORT IN THE ENVIRONMENT

fraction

e

0.80 l

log, (error)

-6.00 -4.00 -2.00 0.00 2.00

Figure 20.8 Cumulative predictor error used to optimize basis function parameters and show the
s1gmhn,ance with respect to surro;:,aLe data for the prediction of particle residence times. RBF predictors
using ¢(r) = ¢ T for ¢ = 1, 4 and 16 times each local average nearest neighbour distance. Local
linear prediction is of similar quality as the best RBF predictor

machinery set up to solve the two-dimensional example may be used to predict the value
of s, k steps ahead in this M-dimensional case. The most immediate difficulties to arise are
those of data density in higher dimensional spaces and, of course, visualization of the result.

We will use a learning set consisting of the first 2000 points of a 6000 point series and
evaluate the predictors by making one step (i.c. ccll) ahcad predictions on cach of the remaining
points. Figure 20.8 provides the prediction error profiles for this example. Three of the curves
correspond to different choices for the constant ¢ in the basis function ¢(r) = e “'.
illustrating how the profile may be used to optimize free parameters. In this instance we knew
there was an underlying deterministic system; how would we evaluate the quality of this result
if we did not?

20.3.3 Null hypothesis testing

The significance of a result is determined through the consideration of surrogate data and
surrogate predictors; other algorithms developed from non-linear dynamical systems theory
can also be evaluated in this manner (Smith, 1992; Theiler er al., 1992). In brief, the procedure
1s to construct a stochastic data series with statistical characteristics similar to the original
data and then to determine whether a given algorithm can distinguish the two series. An
ensemble of surrogates may be analysed and the probability of a surrogate series producing
the observed result may be estimated. Alternatively, surrogate predictors quantify the errors
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that should be expected by even the most naive forecasts. the simplest forecast being either
the persistence of the last observed value, or a random choice from the observed distribution.

20.3.4 Construction of surrogate data

The method of surrogate data can be used to quantify the significance of a claim for non-
linearity, chaos, or even periodicity. There are a variety of methods for constructing surrogate
series; the appropriate method in a specific example will depend on the statistic evaluated
and null hypothesis to be tested. In the following we will consider examples which reproduce
the distributions observed in, or the autocorrelation function of, the data set. In general, any
method of simulation (including. of course, bootstrap and parametric bootstrap methods well
known in statistics; Tong, 1990) may be used; however, the correspondence between an
algorithm for generating surrogates and a well posed null hypothesis may be obscure.

The basic idca is to take surrogate scries from a process which does not, for example,
reproduce the sensitivity to initial value found in chaotic series; discovering whether a given
algorithm can detect this difference (by distinguishing the chaotic serics within an ensemble
of surrogates) is the key point. In short. we want the surrogates to reproduce the statistics
of the series, but not the physics of the system.

20.3.4.1  Shuffling

A typical method for generating surrogates for iterated systems such as the retention times
is to draw from the observed distribution at random; the resulting surrogate series are
independent and identically distributed (I1ID) random variables with the same distribution as
the observations. (This is similar to shuffling the data, but allows the construction of arbitrarily
long series.) The true retention time signal is easily distinguished from surrogate signals of
this type. This should be the case whenever there is some memory in the system — that is,
when the expected value of the next observation is conditioned on the current value. A simple
method to simulate this conditional probability distribution is given in the following.

20.3.4.2 Malicious shuffling

A method of shuffling which retains the general association between consecutive observations
provides more realistic surrogates. For the residence time series, short residence times often
follow very short residence times, whereas long residence times tend to follow those of
intermediate length. We may produce a surrogate series with this quality from a series of
N observations with the following algorithm:

(1) Sort the first (N — 1) members of the series into increasing order, recording the value
which immediately followed each member in the unsorted series (i.e. its image).

(2) Divide the sorted list into K subgroups.

(3) Pick a member from the entire series at random; this is the first data point of the surrogate
serics.

(4) Determine which of the K subgroups the image of this value falls in, and pick an element
from this subgroup at random as the next surrogate data point.

(5) Repeat step 4 until a series of the desired length is achicved.

These surrogates cannot only preserve the distribution of the original data set, but can also
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approximate the (one-step) conditional probability distribution [1.e. P(s; = c|s;—; = b)]
depending on the value chosen for K and are, in essence, Markov chains. For K = 1, the
surrogates are IID, alternatively, for K = N segments of the original are reproduced.
[Assuming that the observations are distinct (i.e. s; # s; for i # j) thereby avoiding an
ambiguity often introduced by quantization effects. In this case, the final image used must
be grouped with an earlier observation. hence K < N — 1.] The choice of a particular value
for K depends on the structure of the distribution. Although surrogate generators will provide
the advertised results in the long run, it should always be verified that, for the desired length
of surrogate series, the observed distributions of surrogate data are not sensitive to either
the choice of K or that of the location of the boundaries between subgroups.

This variant of shuffling was originally envisaged for series which displayed distinct ‘modes’
of behaviour; modes which, in turn, were reflected by the magnitude of the observation.
The subgroups are (individually) IID and there is a fixed probability for remaining in a given
subgroup. As in the following example, K was raken to be much less than N. This appears
more natural for iterated systems than for those which evolve smoothly in time: the one-step
conditional probability distribution is often blind to “trends’ in stationary series. [Exceptions
exist in processes whose conditional probability distributions change under time-reversal (i.e.
P(s; = c|s;_y = b) # P(s;_, = b|s; = ¢)), like a saw-tooth series.] It should also be noted
that it is straightforward to extend this method of shuffling to maintain correlations over periods
longer than one step le.g. P(s; = ¢|s,_y = b, 5;_3 = a)].

Not surprisingly, the expected prediction error of surrogate series with K = 5 is lower
than that for the 1ID surrogates produced by straight shuffling (equivalent to K = 1); none
the less, the observed series can be distinguished from surrogates of this type, as illustrated
in Figure 20.8.

20.3.4.3 Fourier transforms

Surrogates which test whether ‘good’ predictions result from the autocorrelation function
alone may be generated with Fourier transforms (Osborne et al., 1986; Smith, 1992; Theiler
etral., 1992). A surrogate is generated through the inverse Fourier transform of the observed
Fourier amplitudes and random values for the phase of each frequency component. As noted
by Theiler er al. (1992), this is equivalent to testing whether the signal is distinguishable
from a linear stochastic noise. This method is used for the Severn data in the next section.

20.4 DYNAMIC RECONSTRUCTIONS OF THE RIVER SEVERN

We now turn to the analysis of velocity time series taken on the River Severn. The data consists
of simultaneous, three-component velocity measurements taken in 1989 at the Leighton New
Upstream Pool Site; details of the collection and previous analysis of this and related data
sets are given elsewhere in this volume (Heslop er al., 1994) and in Beven and Carling (1992)
and Heslop and Allen (1990). It should be noted that, due to noise contamination, the analogue
signal was redigitized and low-pass filtered (Holland, 1991); it is possible this would have
a negative impact on the current analysis. Renormalization would not affect reconstructions
of the individual components, but would affect the analysis of the total velocity series.
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20.4.1 ‘Predicting’ the total velocity from observed components

As stressed earlier, the non-linear models applied here are constructed completely from the
data; no underlying model of the system is required (aithough additional information can
be used). This makes the method sensitive to variations in the density of data points in the
reconstruction space: in particular. when the system is in a region of reconstruction space
not explored during the learning set, these predictions correspond to extrapolations (rather
than interpolations) and their uncertainty is high even when the other assumptions of the
technique are satisfied. To stress the importance of this effect, and the sensitivity to details
of the reconstruction, we will pose a simple problem: Given the observations v,, v, v., what
i1s the total velocity”? This test, and its intermittent failure. also serves to stress that no underlying
model of the system is assumed.

Figure 20.9 shows the results of a local linear "prediction’ of the current total velocity
given its three component parts (i.e. 7, = 0). Of course, this computation can be performed
exactly as we know the underlying relationship; this information is not available to the non-
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Figure 20.9 Observed (solid) and ‘predicted’ (symbol) values of the total velocity from a local linear
predictor using 32 nearest neighbours (upper). Simultaneous time series of the prediction error (lower)



396 MIXING AND TRANSPORT IN THE ENVIRONMENT

linear model; regions of poor fit (e.g. near ¢ =
data density.

Local non-linear predictors cope better with this difficulty, in part because they do not
assume that the local behaviour is linear and hence can more accurately interpolate low data
regions where it 1s indeed not linear. Non-linear predictors, in turn, can over fit the noise
in the data and are sensitive to the additional parameters in their definition (for example,
the constant ¢ in ¢ (r) = ¢ ). What is needed is a robust method to determine how much
of the local structure should be reproduced by the predictor; some progress in this area has
been achieved in collaboration with A. Mees (manuscript in preparation). The results for
the total velocity ‘prediction’ are summarized in Figure 20.10, where the optimum RBF
predictor reduces the error with which 50% of the predictions are made by more than a factor
of 32 over the local linear case illustrated in Figure 20.9.

525) correspond to areas of relatively low

20.4.2 Predicting short-term fluctuations in velocity

Finally, we consider the ‘standard problem’ of time series prediction. Given a single, univariate
time series of the total velocity, v(r), how well can we predict a future value v(r + 7,)? For
the Severn data with 7, = 2 and 7, = 7, predictor error profiles indicate that the best
predictors have a delay time 7y = | and either M = 2 or M = 3. This has implications for
future data collection. The short delay time indicates that a shorter sampling rate would be
useful, whereas the low embedding dimension also points to data density problems. In addition
to requesting a longer, more densely sampled data stream, comparison with Fourier transform
surrogate series indicates that, for short times, the observed series (7, = 27,) may be slightly
more predictable than the surrogates, but for longer time scales (7, = 77,) the observed
series can be distinguished as significantly /ess predictable than the linear stochastic surrogates.
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Figure 20.10 Prediction error profile for local linear and RBF predictors using ¢ (r) = e for ¢

= 1, 16, 32 and 64 times the local average nearest neighbour distance, d,,
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This result indicates that the series contains significant non-linearities which cannot be captured
by linear models. In addition, it implies that the data density is too low to fill out the
reconstruction space — that is, the data record is too short to allow sufficient recurrence
in most regions of the reconstruction space even though the statistics of the distribution of
data values may appear stationary. Examination of the series shows that many distinct types
of behaviour are indeed observed.

Predictions from a three-dimensional reconstruction based on the three simultaneous velocity
components resulted in an improvement in the case 7, = 77,. The average absolute errors
and predictor profiles of this predictor are also better than those of a persistence predictor.
This interesting result indicates that the orientation of the velocity vector is an important
diagnostic of short time fluctuations.

20.5 DISCUSSION

We should also address the question of whether these techniques are worth applying. The
most robust answer is yes. From the point of view of simplicity, low dimensional chaotic
systems are intermediate between periodic (or static) systems and rich turbulent systems:
without performing tests such as these, they cannot be dismissed. From a more pragmatic
point of view, these techniques can be useful in the event that the dynamics are simple but
not deterministic. For example, reasonable predictions are obtained when these methods are
applied to data originating from non-linear stochastic models (and also for linear ARMA type
models). If the system is equivalent to a linear ARMA model, the parameters of which are
well estimated, then the techniques discussed here can add little more. If, on the other hand,
the observations are non-linear and not easily transformed to linearity (Theiler er al., 1992),
then deterministic predictors which are robust in the presence of noise should yield good
predictions (in the sense of expected values). The data requirements needed to apply these
techniques are currently under investigation; ultimately, it will most likely be their relative
speed of convergence (as the amount of data in the learning set increases) which will determine
their usefulness.

We have illustrated a non-linear prediction technique and presented the initial results of
an analysis of data from the River Severn. The analysis shows (1) that the velocity series
contains important non-linearities which cannot be described within a linear model and (2)
that the three-dimensional orientation of the velocity vector is relevant to the short-term
evolution. The most serious limitations encountered appear to arise from a lack of recurrence
(low data densities), implying the need for longer data series. There is little doubt that series
such as this, and those of geophysical systems in general, will provide a tough proving ground
for these techniques.
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