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Abstract

Forecasting the behavior of chaotic dynamical systems tends to be more dif-
ficult at some times than at others. This arises for two basic reasons: first, that
the intrinsic predictability of a chaotic system usually varies with the state of
the system, and second, the information we have about different regions of state
space varies as well. The intrinsic variability implies, for instance, that Lya-
punov exponents need not reflect any practical “limit of prediction.” A method
of locally optimizing the parameters of prediction schemes, which takes ad-
vantage of variability from both sources, is introduced and illustrated on both
stochastic and deterministic nonlinear systems; difficulties in distinguishing the
two are noted. It is also demonstrated that even very good (but not perfect) pre-
dictors will leave information in the time series of the residual prediction errors
from chaotic signals: it is not possible to reduce the residuals to a sequence
of independent, identically distributed random variables. A straightforward
method to search for this residual predictability is demonstrated.

1. Introduction

Variability and unpredictability are two of the hallmarks of deterministic chaos;
it is our aim here to show how the first can be exploited to reduce the second.
We begin by examining this variability in the Lorenz attractor (Lorenz 1963), and
considering the types of uncertainty in initial condition that give rise to prediction
error, even when a perfect model is at hand. In section 3, we cast the prediction
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problem as one of interpolation in state space; recalling previous work on local linear
prediction, we illustrate a weakness in this approach. We also show that irreducible
approximation error will, in general, leave information in the residual prediction errors
from chaotic systems. The predictability of a chaotic system varies with the location of
the initial condition; the main result of this paper is to introduce a prediction scheme
which embraces the variability both of dynamics and geometry. This approach is
used to optimize local prediction in section 4, where it is illustrated on time series
data from a low dimensional, presumably deterministic laser system, and a nonlinear
stochastic model for sunspots. In these examples, local linear prediction is optimized
by allowing the number of points used in constructing the predictor to vary with
location in state space. Next, in section 6, we demonstrate why a time series from a
chaotic system (defined as a deterministic system with at least one positive Lyapunov
exponent) need not be difficult to predict all the time; the issue here is one of the
uniformity of stretching around state space. The penultimate section contains a
discussion of residual predictability, proposing a simple test to detect systematic
prediction error, which indicates that further improvement in prediction accuracy
is possible. The test is straightforward to apply, and has been found very effective
in practice. Our conclusions, along with a pointer toward ensemble predictions and
the limit of predictability, are given in section 8. In short, accurate prediction of a
nonlinear system from limited data requires sensitivity to the variation of the system’s
properties in state space; examining this variability can cast new light on the “limits
of predictability” as well as individual predictions.

2. Variations in Predictability with Initial Condition

The cover illustration shows the error-doubling time for a variety of initial condi-
tions on the Lorenz attractor (Smith 1994; Ziehmann-Schlumbohm 1994). The colors
reflect the minimum time required for an infinitesimal uncertainty to double; the red
points double within one time unit, the orange within two, the yellow three and so
on. This illustrates the main points of this paper: that the predictability of the flow
is both variable and highly organized. Points with short error doubling times will
tend to be more difficult to predict than those with long ones: the predictability of
a chaotic system varies with initial condition (Benzi and Carnevale 1989; Doerner et
al. 1991; Nese 1989; Palmer 1993; Smith 1992; Ziehmann-Schlumbohm 1994). By ex-
ploiting this variability, we can significantly improve the reliability of our predictions.
Moreover, arguments based on uniform error growth are misleading. The argument
linking the largest Lyapunov exponent to the “prediction horizon” is a good example;
Lyapunov exponents need not reflect practical limits of prediction.

Before diving into the details of predicting chaotic dynamical systems, we consider
two more general forecasting issues: the types of initial uncertainty we are likely to
encounter and the implications of the statistic adopted to evaluate a given set of
predictors. The short term error growth we observe will depend on the nature of
the initial uncertainty in our observation. In the case of a perfect model, error arises
“solely from uncertainty in the initial conditions. When dealing with data on a strange
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attractor, the growth of uncertainty is often quantified through the divergence of
nearest neighbors, whose likely orientation varies systematically around the attractor.
A different structure is observed when this uncertainty is oriented by the largest
(global) Lyapunov exponent (as on the cover), which will differ yet again from cases
where it is determined either by the locally fastest growing direction, or by a random
displacement. In systems like the Earth’s atmosphere, we must consider systematic
errors both in the observations themselves and from any preprocessing required by the
model (as discussed by Palmer et al. 1994 and in this volume). In addition, arguments
based on perfect predictors overlook the systematic effects of optimal, yet imperfect
predictors, an issue examined in section 3 below. Finally, we note that the
vast majority of uncertainty growth studies concentrate exclusively on infinitesimal
initial uncertainties. The quantities of interest when determining the limitations
of prediction must, by definition, consider the regime where the magnitude of the
uncertainty becomes comparable with the range of the observable.

To evaluate a set of predictors, we must choose a criteria for comparison. For
nonlinear systems, the result will be much more sensitive to the particular statistic
chosen than an intuition based on independent, identically distributed (IID) gaussian
residuals would suggest. Both the root mean square (RMS) error and the average
absolute error may be dominated by a few large errors (Benzi and Carnevale 1989).
Using the median absolute error or throwing out a small fraction of the worse pre-
dictions (Casdagli et al. 1992; Farmer and Sidorowich 1987), reduces this sensitivity,
but clouds interpretation of the results. In practice, the predictor which is most fre-
quently the most accurate may be wildly wrong when it is inaccurate. Indeed, it is the
application for which the predictions are made that determines, for example, whether
the prediction which is most frequently optimal is preferred over the one which is
least frequently horrid. While it is obvious that the cost function will play a central
role in determining the “best” predictor, the sensitivity to this choice in nonlinear
systems is observed to be much greater than in linear systems. Prediction errors from
chaotic systems are neither gaussian nor independent; they are correlated both in
time and state space, and, as we shall see, they are usually chaotic themselves.

3. Prediction as Nonlinear Interpolation

The recent success of prediction methods for many chaotic dynamical systems
(Abarbanel et al. 1993; Eubank and Farmer 1990; He and Lapedes 1993; Sauer
1993; Smith 1992; Sugibara and May 1990; Tong 1990; Ziehmann-Schlumbohm 1994;
Ziehmann-Schlumbohm et @l.1995) is due, in large part, to the successful translation
of an extrapolation problem to an interpolation problem (Eckmann and Ruelle 1985).
Ideally, these methods consider a point in the state space of a deterministic physical
system, where the future of each initial condition is uniquely determined and, if the
equations of motion are known, may be estimated. Alternatively, if enough data
are available to provide a sufficient number of recurrent trajectories passing near
the initial condition in question, then we can interpolate the future trajectory given

"only the observations. Yet the functions involved in chaotic dynamical systems are, at
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Fig. 1.  Average absolute forecast error, E, as a function of the number of near neighbors, k,
used for out-of-sample prediction of (solid) z; of the Ikeda map, (dashed) the laser system, and
(dot-dashed) the stochastic sunspot model. E(k) is normalized by the average deviation.

their simplest, nonlinear, and the data are typically distributed on a strange attractor.
We are faced with a high dimensional (> 2) interpolation of a complicated function
sampled on an inhomogeneous distribution. With noise.

The two basic approaches to this problem consider either global interpolation
functions for the entire state space, or restrict attention to local regions. The global
approach requires a complicated interpolation scheme (e.g. radial basis functions or
neural nets). Here we will consider the “local” approach (Farmer and Sidorowich
1987; Sugihara and May 1990; Tong 1990), which allows much simpler interpolation
schemes. Following Casdagli et al. (Casdagli 1992; Casdagli et al. 1992), we can
test for nonlinearity by evaluating a series of local predictors based on the k nearest
neighbors and determining the value, k., at which the observed prediction error is
smallest. For linear stochastic systems, k. should correspond to the largest k, while
for noise free deterministic systems, k. should be of the order of the dimension of the
system, given enough data. As illustrated below, for both deterministic systems with
noise and nonlinear stochastic systems, a minimum at “moderate” values of k is to

be expected.
As a concrete example, consider the chaotic, 2 dimensional Ikeda map

Dikeda(z, y) = (1.0 + 4t [z cos(t) —y sin(t)], 4 [z sin(t) +y cos(t)]) (1)

where t = 0.4 — ﬁ—fﬁﬁ and g = 0.90. We will make one step ahead predictions

of the value of .z, given 1024 observations and base points (z,y) with gaussian noise™

*For simplicity, we consider additive white noise, which is represented through an independent and
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(0 = 0.125) added to the observations. The solid line in figure 1 shows the out-
of-sample, normalized average absolute error, E(k) indicating k. ~ 32. Yet if we
consider only the 5 predictors with £ = 8, 16, 32, 64 and 128, then we find the
k = 32 predictor is the most accurate just 27% of the time (the distribution being
19, 23, 27, 23, and 8%, respectively). This illustrates a shortcoming of selecting a
predictor with this approach: a global choice of k fails to account for the variation in
the length-scales of either the dynamics or the data distribution. These two effects
are shown schematically in figures 2 and 3. Figure 2 shows a one-dimensional local
linear approximation to a polynomial curve. The circle shows the radius at which the
expected value of the noise is equal to the error introduced by the linear approximation
of the true curve. The optimal local radius within which data should be used, 7.,
depends upon the statistics of the noise, the data density and the local curvature;
and this is our point: that even with uniformly distributed data, rop, will change
with the local curvature of the function estimated. Figure 3 illustrates additional
complications due to the nonuniform distribution of data; these effects change not
only with location in state space, but also at the same location with different data sets.
In a given realization, there are likely to be regions where the local data density is too
low to accurately estimate the local component of the dynamics and, simultaneously,
other regions where the data density is sufficient to obtain a very good estimate. The
(locally) optimal neighborhood to fit will vary between these regions, regardless of
whether it is parameterized by k or r. Our goal is to develop a scheme which adjusts
k to minimize the expected prediction error when the local curvature is not known.
We will return to local linear predictors shortly, but first we consider the general
question of irreducible approximation error in optimal predictors.

3.1. Imperfect Predictions: Colorfast chaos

Let D(x) define a deterministic dynamical system at a point x in state space.
For simplicity, we consider a scalar measurement function D(x) of D(x) representing
the future property of D(x) which we wish to predict. The problem is then one of
function approximation; we wish to approximate D(x) given a particular family of
predictors, F', with parameters \. We may divide D heuristically into two parts:

D(x) = F(A\,x) + Er(x) (2)

where F(),x) represents an optimal fit to D and Er(x) represents the deterministic
structure in D(x) orthogonal to F(A,x). F(A,x) is optimal in the sense that the
remaining approximation error is due to the structure of F itself. For example, if F is
a linear model, it reproduces the linear behavior of D(x) exactly; in this case Er(x)
would consist of the quadratic and higher order terms in D(x).

The main point of this section is that, in general, we expect Er(x) to be a good
measurement function: when Taken’s theorem (Sauer et al. 1991; Takens 1981)

identically distributed random variable added to each observation. The case of red (autocorrelated)
_noise can be handled in a similar manner, when the time scales of the noise are shorter than the
recurrence time of the underlying dynamics.
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Fig. 2. Schematic diagram showing the need to balance the noise level against the local curvature
in a linear fit to a polynomial function. The circle shows the radius at which the deviation due to
the linear approximation equals the expected value of the noise.

Fig. 3. Circles containing 9, 17, 33, 65, 129 and 257 points near the point to be predicted (+).
The data is not evenly distributed within the circles, tending to be almost linear for k¥ = 8 and
 remaining completely skewed to the one side of the prediction point until £ = 256.
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applies to a chaotic data stream, it will also apply to the time series of residuals
from our prediction scheme. This implies that the residuals will be chaotic, albeit
with more complicated macroscopic structure and a smaller signal to noise ratio,
and indicates the impossibility of truly bleaching chaotic data (Theiler and Eubank
1994); chaos is colorfast in the sense that the residuals of non-perfect predictors will,
in general, be chaotic. Removing the global linear structure of a chaotic signal (z.e.
“pre-whitening” or “bleaching”) will not result in IID residuals (Brock et al. 1991),
although' it will obscure the results of a nonlinear analysis, as stressed by Theiler
and Eubank (Theiler and Eubank 1994). Similar results hold for more complex filters
(Broomhead et al. 1992; Sauer et al. 1991), where the filter or predictor influences the
particular value that we observe, but the dynamics are determined by the underlying
system! Ultimately, the goal of nonlinear prediction is to reduce residuals to an IID
sequence; we now examine obstacles to such a reduction even in the absence of noise.

As an explicit example of the separation in (2), consider local polynomial predic-
tion near a point xg. We expand D(x) about Xo; setting r = ||x — xg|| and denoting
angular orientation by the vector ® yields

D(x) = p(x0,0) + a1(xo, ®) T;+32()(o, @) r? + a3(x0,0) r® + .. . (3)
F(Ax) Er(x)

where we have shown F'(A,x) and Er(x) for local linear prediction. For higher order
polynomial predictors, additional terms would be shifted to F(A,x). For other non-
linear predictors (e.g. a particular radial basis function fit or a specific neural net)
this decomposition may be difficult to write down, but holds in principle as long as
D(x) is not a member of the family of functions which may be approximated exactly
by F. If D(x) is such a function, then F(A,x) = D(x), and F is called a perfect
predictor.

For local linear prediction of systems in which a3(x, ®) varies significantly with
X, quantities like the optimal radius will be a function of x even when the learning
data is uniformly distributed: ro, will tend to be smaller where az(x,®) is large.
Typically, a;(x,®) does vary; figure 4 reflects this variation in the case of the Ikeda
map. Here the value of a;(x), the absolute value of as(x,®) averaged over O, is
shown. Variations in data density will enhance this effect, particularly on strange
attractors where the distribution is typically fractal and extremely inhomogeneous.

In the noise-free case, k. is the minimum number of neighbors required to solve for
F(),x) (assuming the data is not distributed in a degenerate way). In the presence
of noise, the number of neighbors (or equivalently, the optimal radius, rop) will
depend on the noise level and the local curvature of D at x, as well as the local
data distribution. It is this balance between curvature and noise which is illustrated
in figure 2. This approach is applicable to all local prediction schemes; it is the aim
of local optimal prediction to vary the parameters of F' (e.g. the value of k) in order
to both balance the local structure of Er against that of the noise, and adapt to the
details of the data distribution, in cases where the analytic structure of D is unknown.

n contrast to the series obtained by repeatedly iterating a non-perfect predictor.
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A similar approach might be applied to global schemes as well, but given that global
schemes are more costly to construct and, usually, quite easy to evaluate, it might
be preferable to stack (Wolpert 1992) global predictors or even to choose the best
reconstruction as a coarse function of location in state space (Smith 1992), and then
employ ensemble prediction (Palmer 1992; Palmer 1993; Smith 1994)

Returning to local predictors, we note that the effects of variation in curvature
can be shown by analyzing, for a given x, an ensemble of data sets, each consisting
of uniformly distributed learning data with gaussian noise. By determining the value
of the radius which provides the best fit for each realization and observing this dis-
tribution for different points on the attractor, the a;(x) dependence of r can be seen,
for example, by plotting the distribution of r against the local value of az(x) (not
shown).

Thus we have seen that the optimal number of neighbors will vary with the lo-
cal curvature of D(x) in state space, the local data density, (which will itself vary
“strangely” for dissipative chaotic attractors) and, of course, the details of the noise.
This 1 st observation implies not only that the details will be system dependent and
vary with location in state space, but they may also change at a given point x from
realization to realization; if, by chance, a number of low noise data points are the
near neighbors of the point of interest, the optimal radius for this realization may be
much smaller than that expected from the general arguments above; local optimal
prediction adapts to these special cases.

4. Locally Optimizing Linear Prediction

We now present an algorithm to determine the optimal k& from the data alone.
In each of the cases discussed below, the data set is divided into a learning set from
which the predictors are constructed, and a test set for out-of-sample evaluation. The
learning set is analyzed to estimate the global parameters k. and kmax(>> k), the
largest neighborhood to be considered. The basic idea is to consider a small number
of points in the learning set close to the point to be predicted, xp, and then employ
local “drop-one-out” predictors with various k to predict the (known) image of each of
these points in turn (Smith 1993). The best value of k for this xg is then determined
from the observed errors in predicting these points from the learning set.

More specifically, to determine the best value of k at the point xg, determine
the kmax nearest neighbors of xg in the learning set. From this subset, select the
Narop(~ 8) points nearest to Xg with the requirement that these test points are well
separated in time; this requirement is crucial to avoid picking consecutive points from
the same segment of the trajectory, which leads to highly correlated (and misleading)
estimated errors! In the example shown in figure 3, these Ngyp points lie within
the smallest circle. For several values of k (corresponding to the circles in figure 3),
construct Nyrop distinct predictors by dropping out, in turn, each of the Ny, test
points and predicting the point omitted. Finally, combine these results for each k to

- 1A similar phenomena is known to bias dimension estimates (Theiler 1986)
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Fig. 4. This surface reflects the variation in the quadratic component for perfect, one step ahead
prediction of the = value of the Ikeda map. The height corresponds to the absolute value of the
quadratic term, averaged over angle. The dots show the location of the attractor.
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obtain an estimated prediction error at xg for a k neighbor predictor, and determine
the optimal radius at xo by comparing these estimates.

The choice of optimal radius is non-trivial, and detailed results will be presented
elsewhere (Smith and Drysdale 1994). Frequently, choosing the value of k with the
minimum estimated error improves the predictor a large fraction of the time, but
increases the overall RMS error by making a few bad choices. A second approach is
to consider the estimated error as a function of k£ and find the local minimum nearest
k.. Alternatively, we can partition the entire space, and use the partition element
to define the initial guess for k& (see Smith 1992; Smith 1993). When considering
local minima, it is useful to check that there is not a significantly (in terms of the
standard error of the estimated prediction error) deeper minima elsewhere. In the
results presented below, the second method is used.

We consider data from a deterministic laser system (Weigend and Gershenfeld
1993) and a nonlinear, stochastic model (Barnes et al. 1980). To apply these ideas
when only a single time series, s;, is available, we first form a reconstruction space
via the method of delays (Sauer et al. 1991). This yields the series of M-dimensional
vectors, X;

Xi = (8iy Sizjy -+ -y Simj(M-1)) (4)

where j is the delay time. Under ideal circumstances, Taken’s theorem (Sauer et al.
1991) assures us that many properties from the true state space dynamics are pre-
served by this reconstruction. Of course, this theorem suggests that a single observed
data series can be used, but the use of multivariate data can remove projection ef-
fects commonly found in finite series, although it introduces the question of defining
a metric (literally, an apples and oranges question) . In each case, we use previously
published reconstruction parameters M and j to make direct, fixed step, local linear
predictions, and evaluate the models out-of-sample. For delay reconstructions, this

model is
M-1

F(A,X) = /\o + Z Al+l Si—jt (5)
£=0
‘where the \; are determined by least squares fit to the k nearest neighbors of x. The
variation of the predictor with x can be made smooth by weighting the contributions
of points as a function of their distance from x.

The laser system has been widely discussed (Weigend and Gershenfeld 1993). We
take a test set of 1000 points (figure 5a) and a learning set of 8192 points with M = 4
and 7 = 1, and predict 4 steps ahead. The dashed line in figure 1 shows the expected
behavior of the out-of-sample prediction error with £ with a minimum at k£ = 20.
Using the drop-one-out scheme of the previous section to allow k to vary with x
improves the average absolute error, E, relative to the k. predictor by 6% (median
absolute error by 10%). If we suppress the worst 10% predictions of each predictor,
following Casdagli et al.(Casdagli et al. 1991), this becomes a 6.5% reduction of E;
omitting these points also reduces the RMS error for the k. predictor by an order of
magnitude. When we examine, after the fact, how often each predictor from the set &
=8, 11, 16, 23, 32, 45 and 64 was the most accurate out-of-sample, we find they were
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Fig. 5. Time series data from (a) a laser experiment and (b) the stochastic sunspot model.

best 20, 14, 14, 12, 11, 11 and 18% of the time, respectively; the optimal k clearly
varies with location.

We observe that large errors are likely to occur when exploring new regions of state
space (i.e. the macroscopic structure of the attractor not represented in the learning
set); this is to be expected, in as much as, in new regions of state space, our procedure
for prediction by interpolation reverts to an extrapolation problem. In regions of very
low data density, reverting to the “zeroth order” method of simply taking the image of
the nearest neighbor (often called analog prediction (Lorenz 1969)) can significantly
improve the overall prediction error. An advantage of drop-one-out schemes is that,
even when extrapolating, they provide an estimate of the expected error which differs
from that available from previous predictions in the same neighborhood (Smith 1992).
Local optimal prediction can also outperform fixed k prediction in data dense regions;
small fixed k local predictors, like iterated predictors, get lost in data-dense regions
where the dynamics are simple, but the series is slowly varying and nearest neighbors
are determined by chance (the noise). We expect significant improvement using local
optimal prediction, for example, in the chemical experiments presented by Prof. Olsen
(Olsen et al. 1994).

While we do not know how to construct the analog of figure 4 for this four di-
mensional reconstruction of experimental data, we exploit the quantization of the
data to quickly search for “exact” returns in the reconstruction space, and then ex-
amine the images of these points. This reveals that the majority of exact returns

- have very similar images, but also shows several cases of exact recurrence (i.e. to the
digital resolution of the data), which have vastly different images (comparable to the
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range of the data). Given the available resolution, the function we are interpolating
is multi-valued at these locations, and no interpolation scheme can assure success.
We could lift these degeneracies by increasing M (given enough data), altering the
delay parameter, j , in these regions (Smith 1993), or combining the results of several
different prediction schemes (Sauer 1993; Smith 1993; Wolpert 1992). Note that in
many regions of state space, the surface we are interpolating becomes more contorted
(indeed, multi-valued) as the prediction time is increased beyond the sampling rate;
in such regions we expect iterated, one step ahead prediction to out perform the direct
four step ahead predictor used above.

5. Aleatoric Dynamics

While the prediction techniques discussed above were developed in the context of
nonlinear deterministic systems and then generalized to handle noise (Broomhead and
Lowe 1988; Casdagli 1992; Farmer and Sidorowich 1987), they are applicable in some
nonlinear stochastic systems. In the past, successful nonlinear prediction has been
interpreted as evidence of deterministic dynamics. This interpretation is incorrect
for a class of nonlinear, but fundamentally stochastic systems which do not meet the
criteria of Laplacian determinism; the current state of such a system does not define a
unique future (or past). We call such systems “aleatoric” since, while the underlying
driving mechanism appears not to be deterministic, the dynamics are governed in
large part by deterministic laws, as with a roll of the dice. The boundaries of what
should be included under this heading are not clear, save that the dynamics should
be nonlinear (and not trivially made linear), and the random contribution to the
dynamics should be essential. A chaotic system with dynamic noise (i.e. noise which
effects the state of the system, not just the observation of that state) falls into this
category, but the concept of aleatoric systems was motivated by stochastic systems
with no chaotic analog. One such system was proposed by Barnes et al.(Barnes et
al.1980) as a model for annual mean sunspot numbers, Y (figure 5b). Based on an
ARMA(2,2) model with nonlinear modifications to ensure that Y remains positive
and tends to increase more rapidly than it decreases, the model is

Zpn=01Zn1+ $2Zpn-2+ an — 01651 — Ora,2 (6)
Yo=Zp+a(Z3-Z},) (7)
where ¢, = 1.90693, ¢, = —0.98751,68, = 0.78512,60, = —0.40662, a = 0.03 and the
a,, are I[ID gaussian random variables with zero mean and o = 0.4. This system was
used by the author and Weiss (Weiss 1990) as a surrogate process (Smith 1992; Theiler
et al.1992) to illustrate the difficulty of estimating the correlation dimension of the
observed sunspot record. It also illustrates the advantage of high data densities with
an “incorrect” model, over low data densities from the true model: forecast errors
of local linear predictors fit to 6000 years of model data can outperform the same
predictor fit to the first half of the observed sunspot series, when the evaluation is
based on the RMS error of the residuals of 1 year ahead predictions of the second
half of the observed series.
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To avoid any bias from our knowledge of the underlying system, the reconstruction
parameters of Casdagli et al.(Casdagli et al.1992) (M = 3, j = 1) for the observed
sunspot series were used to make one year ahead predictions. The dot-dashed curve
in figure 1 traces the out-of-sample average absolute error as a function of k showing a
minimum at k = 20, a behavior similar to that expected from a deterministic system?
Further, the data density and sensitivity of the dynamics vary tremendously in differ-
ent regions of reconstruction space, so local optimal prediction improves prediction;
in addition, the time series of prediction errors is far from IID. While Casdagli et
al. (Casdagli et al. 1992) explicitly note that nonlinear stochastic systems may
display this behavior, they imply that one can distinguish a minimum at “medium”
k from one at “small” k. In practice, such a distinction may be invisible (e.g. in fig-
ure 1), and attempts to distinguish stochastic aleatoric dynamics from deterministic
chaotic dynamics may require huge data sets, in order to get good statistics on very
near returns in reconstruction space and to quantify the decay of predictability more
directly (Casdagli et al.1992; Sugihara and May 1990). While of philosophical interest,
the distinction may have few, if any, practical implications, and the ultimate resolu-
tion of this question requires the evaluation of limits that cannot be determined from
any quantity of finite precision measurements. In contrast, the question of whether a
given system is better modeled by a stochastic approach or a deterministic approach
can be profitably addressed.

6. Lyapunov Exponents and Limits on Predictability

We now return to deterministic chaos and support our earlier claim that Lyapunov
exponents can provide a misleading indication of predictability. Lyapunov exponents
represent a growth rate averaged over the attractor. In a simple example, we contrast
this average with the average time taken for an initial uncertainty to double; when
the rate of uncertainty growth is not uniform, the two may be very different. We then
consider the implications this holds for iterated and direct prediction schemes.

6.1. Baker’s Apprentiée Maps

In the Baker’s Map (see e.g. Tong 1990 and references therein), the unit square
is stretched by a factor of 2 in the z direction, compressed by a factor of 2 in y, and
the resulting rectangle is then cut and stacked to form an area preserving map. In
this uniform case, the largest Lyapunov exponent, \,, is 1 bit per iteration. The error
doubling time for a given initial condition is simply the minimum time required for an
initial uncertainty to increase by a factor of two. In this case, all initial uncertainties
in the expanding direction double on each iteration, hence the average error doubling
time, Tyousie, for the Baker’s Map is equal to one iteration. Contrast this situation with
a class of generalized Baker’s Maps, the family of Baker’s Apprentice Maps (Smith

'Indeed, this system is in a sense “low-dimensional,” as discussed in reference (Smith 1992).
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Fig. 6. Schematic representation of a Baker’s Apprentice Map showing how a small portion of the
unit square is stretched a great deal, then cut and stacked, while the majority of initial conditions
are displaced only slightly.

1993), given by

%x,- if 0<z;<a
Tiv1 =
B (zi—a) mod]l ass<l
(9)
ay; f 0<z;<a
Yi+1 =

a+ 5(1B(zi — )] + i) a<z<l
where a = £Z1, 8 = 2" and |z] denotes the greatest integer less than or equal to
z. A schematic diagram illustrating the action of these maps is shown in figure 6 of
the “dough” is stretched a great deal (22") before being cut and stacked, while the
majority of the initial conditions are displaced only slightly (a factor of (1) ~ 1 ). For
each positive integer n, equations (9) define an area preserving map whose positive
Lyapunov exponent, A; (= 1— alog, a) is greater than 1 bit per iteration. Thus the
largest Lyapunov exponent of each of these maps is greater than that of the Baker’s
Map, yet for the majority of initial conditions, the Apprentice Maps are much more

- predictable.
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To quantify this predictability, we compute the doubling time for infinitesimal
uncertainties in the expanding direction of an Apprentice map; points of equal dou-
bling time fall in vertical bands, reminiscent of those seen in the Lorenz system on
the cover. In particular, initial conditions with z in the range o < z < 1 will double
after one iteration, those in the preimage of this band (i.e. o < z < a) after two
iterations, and so on until we reach the number of iterations, call it k, required for
the uncertainty to double without having reached the region of extreme stretching.

But £ is then just the smallest integer such that (i—) > 2; initial conditions in the

band 0 < z < oF will have doubling time k. Hence the doubling time for the n**
Apprentice Map is

k ) k-1 ) 1 == ak
Taounte = ka* + Zi (1 -e)a] = Z o' =
i=1 i=0 l-a

where k = [— 5?:—(51 , and [z] is the smallest integer greater than or equal to z. For

large n, Tyoume = 2"~!. And this happens fairly quickly: at n = 4, T4oume = 8.133 while
by n =8, Tyume = 128.45. The chaotic maps corresponding to large n are easily
predicted (most of the time), although their largest Lyapunov exponent is always
greater than that of the Baker’s Map.

Predictability is reflected in the error doubling time, but not by the Lyapunov
exponents. The extent to which this occurs in other systems will depend on how
localized (and densely populated) the regions of maximum stretching are; here we note
that there are extended regions within which all uncertainties decrease with time for
chaotic attractors in the Lorenz, Moore-Spiegel and Rossler systems (Smith et al.1994;
Ziehmann-Schlumbohm 1994; Ziehmann-Schlumbohm et @l.1995). In such regions,
any initial uncertainty will be damped, an unexpected occurrence in these paradigm
chaotic attractors. This not only eases the prediction of chaotic systems, but may
also be of practical importance, for example, in determining to best times at which
to perturb a system one is attempting to manipulate. In addition, characterizing
the decay of predictability by the growth of errors will be complicated by the lack of
independence between consecutive errors. In fact, the correlation of errors in state
space provides the basis for a test for residual predictability, which we will consider
in the next section.

6.2. Modes of prediction : Direct and iterative forecasts

Variations in predictability will also influence the choice between constructing
iterated predictors (which forecast a short time AT ahead and then are iterated
T/AT times to get a period T forecast) and direct predictors (for which AT = T).
Farmer and Sidorowich (Farmer and Sidorowich 1988) argue that, in the limit of good
predictors, iterative forecasts are preferred. As they note, the argument assumes
a simple relation between the error growth and Lyapunov exponents; it relies on

_uniformity in the stretching in state space and fails, for example, in data dense regions
where the magnitude of the predicted change in one time step is small compared to
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the observational noise. The choice between iterative and direct prediction will vary
in a manner quite like that of the optimal neighborhood size; given sufficient data the
choice of AT should also be made locally.

7. Detecting Residual Predictability

We began by examining the structure of error doubling times on a strange attrac-
tor and observed organization in this structure. To conclude, we suggest adopting the
same approach to look for residual predictability, but using a “color code” based on
the (signed) prediction error, rather than the doubling time. Organization in these
errors means improved prediction is possible. Figure 8 provides an example based
on 1024 test points on the lkeda attractor and a global radial basis function predic-
tion of the next value of z; those points at which the prediction error is positive are
denoted by a plus, while those with negative errors are marked with dot. The large
scale structure in the distribution of prediction error is clear (although the magnitude
may, of course, be quite small). In higher dimensions, where visualization is more
difficult, we test for structure in the residuals by considering nearest neighbor pairs
in the reconstruction space, and simply count the number of pairs where both of the
associated prediction errors have the same sign. If the residuals are independent and
identically distributed (IID), then the expected number of pairs with like signs is
easily computed. As an IID sequence should remain IID under any general regroup-
ing (Dawid 1984; von Mises 1957), contrasting the expected and observed number of
pairs with like signs provides an immediate, quantitative evaluation of the prediction
scheme. There are, of course, more powerful tests for structure in the residuals; one
example being the BDS test, which considers delay reconstructions of the series of the
residuals themselves (Brock et al.1991). The major advantages of the test presented
below are its simplicity and the use of the delay space coordinates of the original
data, allowing immediate access to the small length scales in state space where traces
of predictability are most likely to be found.

The test is based on the observation that errors in the predictions of nonlinear sys-
tems are likely to be correlated in state space due to systematic biases (e.g. Er). To
determine whether nearest neighbor pairs in reconstruction space have independent
residuals:

i ) Consider original delay reconstruction coordinates as a collection of points in
M dimensional space.

it ) Classify each point into one of two groups depending on whether the (signed)
prediction error at that location was positive or negative (alternatively, if it is
above or below its median value).

it1 ) Determine unique nearest neighbor pairs, and count the number pairs in which
both neighbors belong to the same group.

~iv ) Test the resulting distribution (number of pairs the same, number different)
against the null hypothesis that the points are randomly classified.
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Fig. 7. Spatial organization in the residuals of the Ikeda map for a global radial basis function
predictor. Points marked “+” have positive residuals, while those marked “.” are negative. Note
the large scale structure within which points tend to cluster into a fairly small number of regions of
like type.

When coherence is detected, the test may be repeated for larger collections of points
(triples,...) to determine the scale of the correlations. Figures 8 and 9 show the
results for a global radial basis function fit and a local quadratic predictor of the
Ikeda map, respectively. The correlation in the signs of the errors is apparent by eye.
This large scale variation in the residuals of global fits is commonly observed when the
embedding dimension is small enough to view the fit. The correlation lengths in the
local quadratic predictor are smaller, but the null hypothesis of independent errors
can still be easily rejected. Rejection of the null hypothesis is, of course, sufficient
to show that significant residual predictability remains in a reconstruction, but it is
not a necessary condition. While less powerful than the BDS test, it is simpler to
implement and interpret. Our test is most likely to err on the side of underestimating
the remaining predictability, indicating that a given prediction scheme is doing better
than it truly is; we have not yet found such “false positive” results to be a problem.
Indeed, we detect residual predictability in almost all of the chaotic systems we have
examined.

8. Conclusions

The difficulty of predicting the evolution of a nonlinear system varies with the state
of the system. Fortunately, this variation is highly organized, and we may exploit it
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Fig. 8. Spatial organization in the residuals of the Ikeda map for 8 neighbor, local quadratic pre-
diction. Once again, points marked “+” have positive residuals, while those marked “.” correspond
to negative residuals. In contrast to figure 7, the points with positive and negative error are much
better mixed, but still tend to cluster into groups of like type.

both to improve our predictions and our estimate of the degree to which we believe
them. This organized variability also requires careful consideration when attempting
to distinguish aleatoric and chaotic signals, and when interpreting global “bounds”
on predictability and the statistics of error growth; the average error doubling time
may paint a very different picture of predictability than the time at which the average
error has doubled.

In this paper, we have discussed the growth of small, usually infinitesimal, un-
certainty in an initial condition. In practice, any functional definition of a “limit of
predictability” should allow an uncertainty to attain a magnitude comparable with
the range of observed values. Consider the evolution of an ensemble of initial condi-
tions on the Lorenz attractor, all initially within a region of state space which makes
them indistinguishable, given a series of three, 8 bit measurements. The behavior
of such ensembles reveals a wealth of phenomena (Palmer 1993; Smith 1994; Smith
et al.1994), we draw attention to only three here. First, the distribution may ini-
tially sharpen, indicating that in the short term, initial uncertainties decrease with
time (Smith et al.1994; Tong and Moeanaddin 1988; Ziehmann-Schlumbohm 1994;
Ziehmann-Schlumbohm et al.1995). Second, the distribution will become multimodal
fairly quickly: this will cause difficulty if we tune our predictors by minimizing the
squares of the prediction error. The “best” least squares predictor will predict the
‘mean of the distribution, which may not reflect the value of any element in the en-
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semble. Third, even after large times when the distribution is spread over the entire
range of observable values, as long as the distribution can be distinguished from the
projection of the invariant measure onto our measurement function, then meaningful
conclusions can be drawn from the distribution. The limit of predictability is reached
when the ensemble can no longer be distinguished from this projection of the invari-
ant measure (Smith 1994). Needless to say, this limit will vary with the location of
the initial conditions.

The goal of nonlinear prediction is to remove all recognizable structure from the
time series. For chaotic systems, it is not possible eliminate all structure in the series of
out of sample prediction errors without a perfect predictor; to detect this structure in
the residuals, it is useful to work within the framework of the original reconstruction
space of the observations. Ultimately, our goal is to exploit the structure in the
dynamics to minimize structure in the residuals.
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