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PARTICULATE DISPERSAL IN A TIME-DEPENDENT FLOW 
Leonard A. Smith 

Questions concerning the suspension and fall out of negatively buoyant 
particles are of central importance in several fields of current research. 
They arise in a wide range of phenomena including precipitation formation and 
the lifetime of volcanic aerosols in the atmosphere, suspension of plankton in 
the sea and geophysical processes such as the suspension of growing crystals 
in a convecting magma chamber. As an initial step toward understanding such 
phenomena, we examine the motion of particles in a simple laminar flow which 
is periodic in time. Stommel (1949) developed the theory for the case of 
steady rolls. Experimental investigations of a similar steady flow field have 
been performed by Tooby et. al. (1977). Aref (1984) has modeled the stirring 
of a tank of fluid by point vortices. This paper outlines the analytic treat
ment of the time-dependent case to third order and presents the results of 
numerical experiments over a wide range of' conditions. In addition to regions 
of retention and simple fallout, regions of chaotic particle motions, in
cluding some in which the particle slowly migrates downward through a series 
of cells, are observed. Initial observations concerning the stabilization of 
particles which would fall out of the steady mean flow are discussed. 

The dynamical system representing particle motion is of interest in its 
own right. It is a two-dimensional Hamiltonian system, periodic in both space 
and time, so the phase space of the system is three-dimensional and of finite 
volume, and therefore may be easily visualized. Two-dimensional Poincare 
sections of phase space reveal regions in which particle motion is described 
by either a simple torus, a twisted torus (islands), the breakup of islands 
into chaotic regions, sheets which act as barriers to particle motion and the 
breakdown of these sheets into islands and then chaotic regions. Which 
behavior a particle will display depends on its initial position and the 
strength and frequency of the oscillations. Hamiltonian chaos is most 
commonly observed in three-dimensional systems. In this system, the role of 
the third degree of freedom is played by the explicit time dependence of the 
Hamiltonian. 

2. STEADY BACKGROUND FLOW 

The suspension Qf negatively buoyant particles in horizontal fluid 
rolls is easily observed in the laboratory. The standard apparatus consists 
of a cylindrical tank filled with a high viscosity fluid and mounted with its 
axis horizontal. As the cylinder is rotated about its axis, the fluid quickly 
(NlO seconds) reaches solid body rotation. Small spheres placed in the 
ascending flow are observed to follow nearly circular orbits about the par
ticle stagnation point, where the fluid velocity is equal to the negative of 
the particle settling velocity. In addition to the negatively buoyant par
ticles, several small, almost spherical air bubbles (positively buoyant) were 
observed to execute similar motion in the descending fluid on the opposite 
side of the tank. A detailed investigation of this system has been performed 
by Tooby, Wick and Isaacs (1977), using a tank 15 em. in diameter, with test 
particles· of radius between 0.8 mm. and 3.0 mm. and rotational periods in the 
range S.O .to 40.0 seconds. They find that particle orbits generally have 

· periods slightly greater than that of the fluid. On longer time scales the 
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orbits evolve, the radius changing by a factor of two in 30 to 100 fluid 
oscillations. The density and diameter of the test particle determine whether 
its orbit grows or contracts. This instability is due to inertial effects and 
the influences of the walls on finite diameter test particles. Particle
particle interactions are also observed to produce large perturbations in 
particle motions (Whitehead, private communication). In the cases of precipi
tation formation and magma crystal growth, the properties of a single particle 
change influencing the particle's motion, which in turn feeds back upon the 
particle's growth. None of these complicating effects are considered here. 

The effect of steady convective rolls on the motion of a small, slowly 
sinking body was first investigated by Stommel (1949). This work was stimu
lated by the observation that the yield of the plankton tows taken along the 
direction of the wind, and therefore parallel to the axis of wind-induced fluid 
rolls, were much more variable than those from tows taken perpendicular to the 
wind. Stommel considered a particle elowly sinking through fluid rolls with a 
stream function. 

where the 
direction 
figure 1. 
velocity, 

~ p (x,y) • A sin x sin y (2.1) 

subscript F denotes the fluid, x is measured in the horizontal 
and y in the vertical. The streamlines of this flow are shown in 
The. velocity of the particle is that of the fluid plus a settling 

v8 , in the negative y direction. Specifically, 

cb • ~ 
H • • = ~V • A sin x cos y 

(2.2) 
••A cos x sin y - Vs 

Thus the particle motion has a stream function 

t p (x,y) • A sin x sin y + vsx (2.3) 

Particle trajectories may be classified by the ratio of the settling velocity 
to a measure of the maximum fluid velocity: 

!a s • ,. (2.4) 
In the case s • 0 t~e particles are neutrally buoyant and follow the stream
lines of the fluid. For s ~ 1 (or s ~ -1), all particles fall (.rise) through 
the cells, horizontally displaced away from the region of maximum fluid up
flow. This displacement results from sinking (rising) particles having mini
mum vertical velocity in regions of maximum upward (downward) fluid velocity. 
This increases their residence time in the area, and hence their horizontal 
displacement from the background flow. 

For an intermediate value, -1 < • s < • 1 there exists a region of 
retention in which particles will execute closed orbits, and therefore, remain 
suspended in the cell. Streamlines of particle motion for several values of s 
are shown in figure 2. The boundary of the region of retention is delineated 
by the largest closed orbit within the cell. Along this boundary the particle 
stream function has the same value it takes along the cell border. This may 
.be seen in figure. 2. In the steady case, this is the orbit of a particle 
which rises (sinks) infinitesimally close to the upward (downward) flow at the 
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Figure 

Streeml ines of the background flow field described by 
equetion2.1 
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cell boundary. The large variations in yield distinguish tows which sample a 
region of retention from those which are taken in relatively plankton-free 
region between them. Tows perpendicular to the rolls sample both the plankton
dense and plankton-free regions. 

For the remainder of this paper, we restrict the discussion to nega
tively buoyant particles in a cell in which the fluid motion is counter
clockwise. All results apply to positively buoyant particles and clockwise 
cells with the appropriate reversal of signs. Speicifically, we will consider 
particles initially within the cell with fluid stagnation point at (x • ~. 
y • ~ This cell is the upper right quarter of figure 1. Let us denote the 
stagnation point of the particle motion by Xs• At this point the fluid 
velocity is directed upward and equal to the settling velocity of the particle 
in magnitude (xs • sin-1 (s)). For a given value of s, the orbit of a 
retained particle may be uniquely identified by the location of its right most 
crossing of a line of zero horizontal velocity (y • n 'l't , n • 0,1, ••• ). The 
value of x at this point is denoted Xr• In steady flows, paths of particles 
with different initial positions do not cro,ss unless they follow the same 
streamline. 

The following observations of the motion of particles in steady flows 
were made with the numerical model described in section 4. Consider particles 
located within a regiOn at retention. Figure 3 shows the period of the par
ticle orbit as . a function of xr for several values of s. Near the fluid 
stagnation point, XF, the fluid and s • 0 particles are in solid body 
rotation with period P • 2W. The period increases with increasing Xr, 
becoming infinite for a particle on an ascending cell boundary. For a given 
value of s, particles near the particle stagnation point have the minimum Xr 
and lowest period orbits. As s increases, th~ period of these tightest orbits 
(xr N xs) also increases. All particles with xr > xs are retained. 

The increase of the minimum period with s may be understood as follows. 
To simplify the algebra, shift the coordinate origin to the fluid stagnation 
point and let A • 1. The stream function is then 

f f' (x,y) • COS X COS y + VsX 

Near the particle 'stagnation point (xs • sin-l(v), y • 0) the particle 
motion may be described by the first terms of a Taylor series 

c)i ,)jr 
i<<.~t ; 't) ~ x <. lt• \" ~) + (.Jt- 'II,) ri ' .. " ... ('f- Va \ 'It I ~ Vs 

. 
( x,") Y t~t~,v.~) 

c) ' ~· y ::' + (Jl-~)~\ + ly-y.~) ~ '--"· .. "' or 

• H 

1. :. - 'r< y 
• ,.., 
y :;. K~ 

(2.5) 

(2.6) 

(2. 7) 
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Figure 3. The period of retained particle orbits as a function 
of x for s • 0.0, 0 . 25, 0.5 and 0 . 9. 

N 
)t = X - lCs ,., 
y '; 'I - 'Is 
~ '; c.o • (. X&) (2.8) 

particles near the particle stagnation point are in solid body rotation 
period 

p • a.lt 
w (2.9) 

This is. the dashed line in figure 3. The cross marks along this line mark the 
location of the stagnation points for the numerical results shown in the 
figure. 
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3) PERIODIC BACKGROUND FLOW 

To investigate the effects of allowing the background flow to vary in a 
periodic manner, redefine A as 

A(t) • 1 + £ cos(w• t) (3.1) 

where E is the magnitude and ~ the frequency of the oscillations of the 
fluid flow. The parameter ~ is used to separate time scales in the slowly 
varying case. With the coordinate origin at the fluid stagnation point, the 
stream function is now 

~~(x,y,t) • A(t) cos x cosy+ vsx (3.2) 

Two cases are considered analytically: first where the fluctuations 
about the mean flow are small ( ~c. c. 1, • • 1); and second, where oscilla
tions in the flow occur on a time scale long relative to that of orbital 
periods ( w Ol <c. 1). In both cases, the expansions assume small x and y as 
measured from the relevant stagnation poi~t. 

Case A) Small Oscillations(£.<< 1) 

Consider small oscillations about the mean flow ( £.~c. 1; «. • 1). 
Expanding the particle velocity field in x and y and retaining only linear 
terms yields 

• - A c i:) ,. ': y (3.3) 
0 A lit) y ': l( v, 

or 
XT ':. -y 
YT : X 'tf~ ( \ - £ c.oa c.~T) • "(£a) (3.4) 

where a new time T has been defined such that 

f.t :r. K1~> h 
+ (3.5) 

Note that IT-t l ~ ~ for all t. Solving for x(T), y(T) yields 

X(T) 'Z. 0( 0 S \ o.l { T 1' 4>0 ) 

(3.6) 
'f (T) • - OCo t.os. ( T • cfo ~ - E 

where oc. and ~. depend on the initial position of the particle. For w • 0 
the motion is that of solid body rotation. For small w , the particle makes 
order £ oscillations about the circular path centered on the particle stagna
tion point. This motion is observed in the numerical simulation. Figure 4a 
is a repre.sentative trace of particle motion. 

( 



250 -
Case B) Slow Oscillations ( Q( cc 1) 

In this case we reduce the third-order problem to one of elliptic 
integrals by suitable transformations. Specifically, we first transform from 
coordinates relative to the fluid stagnation point to an origin located on the 
particle stagnation point while rescaling time as in the small oscillation 
case. This transformation r.moves the constant terms in the velocity equations 
but introduces quadratic terms. These quadratic terms are then removed by an 
additional transformation so that the lowest order nonlinear terms are cubic. 
The resulting equations are solved for (x)2 and the solution presented in 
terms of elliptic functions. 

Recalling the initial equations 

• )( • - Al6') c.•~" .,·,.ay 
• y : A <-t\ ~I.. r. ""'~ y - vs (3.7) 

first remove the constant term with the transformation 

j - J& - •• 

(3.8) 

where v 3. 

(3.9) 

to obtain 

J ~ ~ - ~ rt, + v J 'l ... ~ ~a • 'l • ~ 'tJ 

l'zt= Kf ~Cf .... 1t') - ~ rJ i r ,& (3.10) 

which, upon rescaling, becomes 

)tT = - y + s (lt)~i) 
(3.11) 

Yr : )( • 

' 
(·~'I) 

where 
~(>4,y) :::. 

v 
~ ·'I 

'(ll,y) :::. -~ .1'< ( " " + i.a) (3.12) 
I 

I 
I 

I 
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The desired form is 

• 
l $ -17 • 'J'"'('f,-i) 
• ! .b£5,72) '1 = + 

where the lowest order terms in..,.. and II are cubic. Define ~ ( J , 71) and 
; ( 5 , 'l ) such that 

X = ~ .. c() <LI'Z) 

y = 1?. + .p £L7t) 

From equations (3.11) and (3.14) 

~ ( ~) ~ ( : -~) l:) . (;) 
{j) :~ )( J J = + ( ~, .,J 

( ~ 
and the requirement 

:. (!J 
Expansion of ~ ( ~ , 'l ) and ¢ ( J , f ) in Taylor series 

~ (~\'l~ : A,'fa • &,1 'L • t.,tt' + ~~ Ci,'l)., ·· · 

f.a(S,'t) '" ,, u, 11 > + ··· 

Cfl t 'J ,JZ) : cJia. n~ n.) ~ '*'s tf,n) ....... 

and substitution into equation (3.15) yields, for ~. and ~A 

- "Z tP1 + f ~It +- " - s ~ 0 

- ~ 1/JJ .. J 'f' - <P - if = 0 

(3.13) 

(3.14) 

(3.15) 

(3.16) 

(3.17) 

(3.18) 

(3.19) 
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Determining the quadratic parts of f(x,y) and g(x,y) in terms of ~ and ;z. 
and solving the above equations for fi. and fa yields 

~a (l,'l) = 
'I' .a; ( ~ ' -'1) ~ 

v~ cl ~" ... 
.f + ""'l. 

With equation (3.20) and the rescaling 

equations (3.17) become 

• x :.-y - .,.,y + sy3 

y ~ Jl 3~y.\ ,,J 
Eliminating y yields 

•• 
)(:. -)l + 

or 

li). = ..1. •o 

Expanding the exponential and solving the truncated system as an elliptic 
integral yields (Abramowitz and Stegan (1964)) 

where 

a 
a • 

-h,( 

~ '-"' 
X • b SC ( t , 0. - v ) 

ii.4 -or 

• (-(a •b))l'a) 

- (- ,,~h)\•) 

(3.25) 

(3.20) 

(3.21) 

(3.22) 

(3.23) 

(3.24) 

(3.26) 

and sc is a Jacobi~n elliptic function. The process must now be repeated allowing 
the constants of this case to become functions of the slow time, ~ . 

4) NUMERICAL EXPERIMENTS 
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In order to explore particle motion outside those areas accessible to I 

analytic investigation, a numerical model of the tank was constructed. The 
model evolves the particle position given the fluid flow field of equation 
(2.1) with A(t) as in equation (3.1). We simulate the region 0 < • x < • 2; 
0 < • y < • 2 with periodic boundary conditions. Any particle passing 
through the bottom (x,O) is reintroduced at the top (x,2 ~ ). A particle 
which passes through the bottom boundary is said to "fall out" of the cell, as 
opposed to a "retained" particle which does not cross a horizontal cell 
boundary. The horizontal motion of the particles is strictly that of the 
fluid, thus contours of zero horizontal fluid velocity, such as the lines 
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y • nW, n • 0,1,2, ••• , are barriers which the particles cannot cross. None 
were observed to do so. As noted above, all particles were initially placed 
in the counter-clockwise cell which is centered at (1.5 'W, 1.5 1'1' }. 

Observations with a steady fluid flow were noted in Section 2 above. 
When the flow becomes periodic, there is a qualitative change in the regions 
of retention. In the steady case, negatively buoyant particles arbitrarily 
near an upflowing branch are retained, completing closed orbits. This is 
apparent in the lower part of figure 2a where the retention regions of two 
horizontally adjacent cells appear to merge across the cell boundary, In 
periodic flow, each region of retention is separated from the cell boundary by 
a finite band. Particles initially in this band will often remain in the cell 
for many revolutions, but will fall out. The physical explanation of the 
phenomenon is straightforward. For small E , a particle oscillates about 
its equilibrium path. As long as these excursions are completely within the 
region of retention, the particle will remain in the cell. A particle which 
oscillates to a point outside the retention region may remain in the cell for 
a time, depending on where in the cell it is when it crosses the boundary. 
Eventually, most such particles will cross the boundary near the bottom of 
their trajectories and fall out of the cell. It is conceivable that, for 
certain initial positions, a resonance between the fluid oscillations and the 
particle orbital motions occurs which tends to stabilize the particle. While 
the stabilization of particles in regions which are unstable in the mean flow 
has not been observed, ' some particles tracing orbits which do not lie entirely 
within the retention region for the steady flow corresponding to A • ( 1 - £. } , 
are retained for · the entire observation period (1000 fluid periods} and appear 
stable. 

Consider the paths of particles near the region of retention which, 
after some time in the initial cell, fall out. When these paths are strobed, 
chaotic motion is observed. A particle well within the region of retention 
will remain in the cell for the entire observation period (over 5000 fluid 
periods}, while a particle far outside the region will fall through the cell 
with an average residence ti~e of approximately one period. A particle in 
this intermediate region falls out of the original cell, usually passing 
quickly through several cells before being reentrained. The residence time 
averaged over a chaotic fall through 500 cells is typically 15 periods per 
cell. Figure 9 is a histogram of the frequency of various residence times. 
It is clear that these particles take much longer to fall through a series of 
rolls than would be predicted from the steady case. 

Examples of these motions are shown in figure 10. Particles well 
within the region of retention display two distinct classes of motion. In the 
first, a generalization of oscillations about the mean path, the particle 
moves within the bounds of the two orbits for the steady flow with A • (1 +£} 
and A •(1 - t }. The particle track fills in a two-dimensional cross-section 
of a donut, oscillating back and forth along a path which does not close on 
itself (figures 4 and 5}. When the position of the particle is recorded once 
per cycle of the background fluid flow, the resulting graph is a cross-section 
(an x,y plot at given phase} of the three-dimensional phase space of the 
system. Figure 4b is the motion of the particle shown in figure 4a strobed in 
this way. By strobing at different phases it is seen that the particle winds 
about on a torus in phase space. Since a single point in phase space defines 
~he future evoluti.on of the system, the particles located within closed curves 
on Poincare sections are trapped there. 
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A second behavior is observed when the particle completes an integral 
number of revolutions about the stagnation point in an integral number of 
fluid oscillations. During each revolution about Xs, the particle follows 
one of several distinct pathways. Which path is executed depends on the phase 
of the flow as the particle crosses the x axis from below (x > xs>• An 
example of this type of motion is shown in figure 6. The clear regions ahown 
remain clear, with the particle being restricted to and slowly filling the 
outlined region. In this example two revolutions about the stagnation point, 
one along each branch, occur in three cycles of the background fluid flow. We 
shall call this completion of the motion (several revolutions until the 
crossing of the x axis occurs at approximately the same position and phase) a 
particle orbit. In this case the particle orbital period is three times the 
fluid flow period. 

When this motion is strobed at the fluid flow frequency, islands are 
observed (figure 7). Particle motion on these islands is stable for all times 
observed. The particle visits every i .sland in turn, slowly delineating each. 
Poincare sections taken at different phases are shown in figure 8. The 
islands slowly deform and rotate in the direction of particle motion until, 
one full fluid period later, particles initially on island 1 (2,3) have taken 
positions on island 3 (1,2). Recalling that these figures are cross-sections 
of a three-dimensional phase space, it is seen that this motion takes place on 
a torus which is stretched and twisted, closing on itself in three fluid 
periods. Particle paths wind around on this torus. 

Particles initially just inside or outside the island ring (relative to 
the particle stagnation point) wind abut a single torus. Particles within the 
boundaries of an island wind about a similarly twisted torus always bounded by 
the outer torus (coaxially). Particles initially located between the islands 
at the same distance from the stagnation point are observed to display chaotic 
motion contained by the tori which bound the island ring. 

The strobed paths for a variety of initial positions are shown in 
figure 10. Counting from the left, the first particle (1.1 ~ , 1.5 ~ ) falls 
through the cell, oscillating about the strobed path shown. This line presents 
a barrier which other particles do not cross - hence the open region in the 
lower left-hand side of the figure. This open area is occupied by the mirror 
particles of those plotted. As the initial position of the point is moved to 
the right along y • 1.5 ~ , this curve breaks up into islands, which in turn 
becomes part of the ~ chaotic sea shown in the figure. Particles initially in 
this area are found to become trapped in a cell for many revolutions and then 
fall (drifting) through the cell (often several) before becoming reentrained. 
Embedded in this chaotic sea are regions avoided by the falling particle. The 
largest of such areas is the region of retention containing the particle stag
nation point. Islands are observed in this and several other of the barren 
regions where the particle motion is such that they are stabilized against 
fall out by the oscillations. An example of this behavior is the particle 
whose motion produces the "ears" in figure 10. Here the period of the 
particle motion is such that the maximum of the fluid flow occurs twice in 
each revolution - once at the top of the trajectory and once at tne bottom. 
Particles following these trajectories travel outside the region of retention 
for a steady flow with A • (1- a). The three islands located within the 
retention region· ("eyes" and "mouth") are the same islands shown in figure 7. 
Also shown are one enclosed and one encompassing torus. 
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Particle trajectory cherectoristic of islands. In this 
case XO = 1.50: TO = 1.50: V = 0.25: &. = 0 . 50: P = 1!.50 
Note that this figure is en enlargement of the cell. 
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R sample histogram showing the relet1ve frequency of 
various residence times for particles in the fallout 
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Whether particles outside the mean region of retention can be stabilized 
by the fluid oscillations is a question which deserves further investigation. 

Here we briefly note some initial observations with regard to the effect of in
creasing the magnitude of the flow oscillations on the retention of particles 
in marginally stable regions. Figure 11 shows the region of the upper ear in 
figure 10 for several values of t . At small E , a stable orbit is observed. 
As t increases this torus breaks up into islands and then disintegrates alto
gether, the particles falling through the cell after only a few revolutions. 
As E is increased further, the region again begins to stabilize - particles 
still fall through, however they spend a great deal of time in these quasi
stable regions between vertical drops. 

At very large values of E a different type of behavior is observed. 
Figure 12 displays the strobed trajectories for particles with the same 
initial positions as those in figure 10, with ~ • 8.0. For e. '> 1, the flow 
reverses direction. Quasistable particle motion is observed to be centered 
about the stagnation point of the fluid. A large portion of the cell is 
subject to chaotic particle motions. The three island ring and fuzzy inner 
and outer elliptical paths are observed to' be slowly evolving outward. The 
evolution of the islands is much slower than that of either of the simple 
tori. It would be interesting to observe how (if) the particles within the 
island ring escape. Although their orbits are evolving outward, the inner 
particles in figure 10 are still in the initial cell after over 500 periods of 
the fluid flow. 

The motion at large E is qualitatively different from that of small £ 
(see figure 13). Quasistable regions in this flow have been found where the 
particle revolution period is slightly less than half the fluid period. Such 
a particle, initially near the top of its orbit will be swept around by the 
strong flow, again to near the top of the cell, as the flow weakens it will 
sink down toward the cell center and then be swept around in the opposite 
direction sense by the second half cycle of the fluid flow. Often the radius 
of the particle from the stagnation point will increase until the particle 
falls out, however some initial conditions particles have been observed to be 
carried up above their initial points and then dropped back near their original 
position (and phase). In this manner the particle is retained in the cell for 
a very long time (t )t max observations • 500 fluid periods). 

5) CONCLUDING REMARKS 

The motion of slowly sinking particles in a simple time dependent flow 
has been examined. It i~ found that this system is quite rich, displaying a 
surprising variety of particle motions. In addition to bounded chaotic 
motions, particles falling through the cells chaotically are often entrained 
and retained for significant periods of time, so that the sedimentation rate 
in this case varies substantially from the case of steady rolls. Investiga
tions of the effects of both small and large fluid oscillations reveal that 
retained particles are more stable than might be expected. 

The model may be extended to consider inertial effects. These will not 
necessarily be destabilizing, especially in the case of large fluid oscilla
tions. Inclusion of Brownian motion would allow migration across vertical 
cell boundaries, ·as well as into and out of regions of retention, with 
interesting effects on the mean sedimentaion rate. More applied problems, 
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such as precipitation and magma crystal growth may be approached by including 
a growth parameter which is a function of location and time. In all, this 
type of model provides a foothold into many topics of current interest. 
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