
� � �

� �
Physics Letters A 9909 2000 xxx

www.elsevier.nl� locate� pla�

Localized Lyapunov exponents and the
prediction of predictability

Christine
�

Ziehmann a, � , Leonard A. Smith a,b,c, Jurgen Kurths a¨
a� Uni	 ersitat Potsdam, Institut fur Physik, Nichtlineare Dynamik, Postfach 60 15 53, D-14469, Potsdam, Germany¨ ¨

b



Mathematical
�

Institute,Uni� ersity of Oxford, Oxford, OX1 3LB, UK
c London

�
School of Economics, London WC2A 2AE, UK

Received 9 December 1999; received in revised form 19 April 2000; accepted 3 May 2000
Communicated by C.R. Doering

Abstract

Every
�

forecast should include an estimate of its likely accuracy, a current measure of predictability. Two distinct types of
localized
�

Lyapunov exponents based on infinitesimal uncertainty dynamics are investigated to reflect this predictability.
Regions of high predictability within which any� initial uncertainty will decrease are proven to exist in two common chaotic
systems;� potential implications of these regions are considered. The relevance of these results for finite size uncertainties is
discussed
�

and illustrated numerically. � 2000
�

Elsevier Science B.V. All rights reserved.
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1. Introduction

Prediction of predictability refers to the quantita-
tive

�
attempt to assess the likely error in a particular� �

forecast
�

a priori. There are at least three sources of

�
Corresponding author. Tel.: � 49-331-977-1302, fax: � 49-

331-977-1142. � �
E-mail address: chriss@agnld.uni-potsdam.de C. Ziehmann .

�  
difficulty

!
in quantifying predictability: 1 the depen-

dence
!

of measures of predictability upon the particu-" #
lar

$
metric adopted 2 the dependence of uncertainty

dynamics
!

upon the magnitude of the uncertainty in% &
the

�
initial condition, and 3 the fact that errors in the

model are often unknown until after predictions are' (
observed) to fail. Lyapunov exponents 1–3 quantify
predictability* through globally averaged effective
growth+ rates of uncertainty in the limits of large time
and, small uncertainty; thus by construction they are
of) limited use. To obtain a quantitative estimate of
the

�
accuracy of a particular forecast, the local dy-

namics- of uncertainties about that initial condition
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are, more relevant 4–9 . By allowing better risk
assessment,, a prediction of predictability is of value
in any6 field from physics to economics; weather
forecasting

�
provides a particular example relevant to

both
7

fields.
Effecti e8 growth+ rates defined over a fixed dura-

tion
�

are also used to quantify predictability; they are
employed9 daily in the operational weather forecast: ;
centers< of Europe and North America 10,11 . In
Section 2, the distinction between what will be called
finite time exponents and finite sample exponents is
shown to lie in the particular initial orientation= of
the> perturbation each9 considers for a given initial
condition;< this can result in dramatically different
effecti8 e8 growth+ rates. Both types of exponent are
called< ‘Local Lyapunov exponents’, and recognizing
the

�
distinction between them resolves some confu-

sion in the literature. In terms of predicting the
forecast

�
accuracy, the finite time exponents are shown

to
�

be the more relevant quantities in Section 3, where
it is also proven that the mean of the largest finite
time

�
exponent does not provide an unbiased estimate

of) the corresponding global exponent, and similarly
for the mean of the smallest finite time exponent. In
addition,, in regions of state space where the largest
finite time exponent is less than zero all6 perturba-*
tions

�
will shrink independent of their orientation; this

is
?

investigated in Section 4 where such regions are
proven* to exist in two common chaotic maps.

Each class of Lyapunov exponent discussed in
this

�
paper assumes the observational uncertainty is

infinitesimal;
?

of course as long as it remains in-
finitesimal

�
it cannot limit predictability, and once it

is finite its growth is no longer quantified by Lya-
punov* exponents. Therefore, the rigorous results re-
stricted to infinitesimal uncertainties are contrasted
with@ numerical demonstrations for finite uncertain-
ties

�
in Section 4. Part of the popularity of global

Lyapunov exponents stems from the fact that theirA
valueB does not depend upon the metric or coordinateC
system used; this is not the case for the exponents
based

7
upon a finite length of trajectory, yet in prac-

tice
�

only the latter are available. We return to this
issue in Section 5. Finally, there is the question of
modelD error in nonlinear forecasting, either paramet-E F
ricG or structural 12 . Arguably, model error may be
more responsible for poor predictions of real nonlin-
ear9 systems than ‘chaos.’ Model imperfections are

not considered in this paper as there is no systematic
mannerD to include system H modelD mismatches, thus it
is

?
assumed throughout the paper that the perfect

model is known.

2.
I

Localized Lyapunov exponents

The dynamics of infinitesimal uncertainties about
a, point xJ in an mK -dimensional state space are0

L M N
governed+ by the linear propagator, O P xJ , Q t> , which0

L
evolves9 any infinitesimal initial uncertainty R S R

T mU
0

L
about, xJ forward for a time V t> along, the system’s0

L
trajectory

�
to xJ :W

t

X Y Z [ xJ , \ t> ] . 1
^ _ ` ab

t 0
L

In
c

discrete time maps, the linear propagator over k
d

iterations
?

is simply the product of Jacobians alonge f g h
the

�
trajectory, that is i j xJ ,k

d k l m
xJ . . .0

L
k

n o
1p q r st u

xJ v w xJ .1 0

For
x

high dimensional systems, interest tends to be
focused

�
on subspaces which are likely to contain they z

fastest growing perturbations 4,10,11 . Two orienta-{ |
tions

�
of particular interest are i that which will

have
}

grown the most under the linearized dynamics~
k

n � � � � �
after, k

d
steps, xJ , and ii the local orientation of1 � �

the
�

globally fastest growing direction, l x
�

, which1 � �
is sometimes called the Lyapunov vector 13 . The
first of these orientations is defined by the singular� �
valueB decomposition 14 of the propagator: the�

k
n � � �

xJ are, simply the right singular vectors ofi � �� �
xJ ,k

d
. Each is associated with a singular value,�

k
n � � �� xJ ; by convention, � � � . The finite

�
timei i i � 1� �

Lyapuno
�

exponents8 15 are

1 
k

n ¡ ¢
k

n £¤ ¤ ¥ ¥¦
xJ § log

$ ¨ ©
xJ ,k

d
xJª « ¬  ® ¯° ±

i 2 ik
d
1 ²

k
n ³´ log µ xJ . 2

¶ · ¸ ¹º »
2

¼
ik

d

Properties
½

of these exponents have been noted by¾ ¿ À Á Â Ã
Lorenz

Ä
4 , Grassberger et al. 16 , Abarbanel 5 andÅ Æ

references thereof. By Oseledec’s Theorem 1 , inÇ
k

n È É Ê
the

�
limit k

d Ë Ì
the

� Í
xJ converge< to a unique seti

of) values, the Lyapunov exponents Î , which are thei
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same for almost all xJ with@ respect to an ergodic
measure.

1Ð Ñ Ò Ó
k

n ÔÕ Ö × Ø
lim

$
log Ù ,

Ú Û
i i 2 ik

d
k

Ü Ý Þ
i ß 1,2, . . . ,mK 3

à á
If the sum of the â is negative, a volumei

element9 in state space will shrink, on average, as it
evolves9 along a trajectory, and most initial condi-
tions

�
will evolve towards an attractor of dimensionã ä

less than mK 17 . At each point xJ on) such anå æ
attractor,, the orientation l x

�
denotes

!
the orienta-1

tion
�

corresponding to ç , that is the orientation1

towards
�

which almost every uncertainty è in
?

the
sufficiently distant past would have evolved, whené ê
the

�
trajectory reaches xJ . Similarly, define l x

�
as,

mUë
the

�
orientation corresponding to ì for

�
details, seemUí î ï ð ñ ò ó

17 . Numerically, l x
�

and, l x
�

can< be approx-1 0 mU 0
L

imated by evolving the singular vectors ofô õ ö÷ ø
xJ ,2 j

ù
, that is, the 2 j

ù
step propagator aboutú û

j
ü ý

th þthe
�

j
ù

pre-image* of xJ , forward j
ù

steps until the0
L

trajectory
�

reaches xJ . Thus0
L

l
� ÿ j

ü �
xJ � � � xJ , j

ù � 2 j
ü �

xJ , i � 1,mK . 4
� � 	 
 � � �

i 0
L �

j i
ü �

j
ü

�
j

ü � � �
As

�
j

ù � �
, we expect l x

�
to

�
approach the orien-i 0

L� �
tations

�
of l x

�
for

�
i � 1 and i � mK , leading to thei 0

L
definition

! 1 of) the finite
�

sample Lyapuno exponents8
1�

k
n � � � � � xJ ! log

$ " #
xJ ,k

d
l x

�
, 5

$ % & ' ( ) * +, -
1 2 1k

d
.
k

n / 0 1 2 3
and, 4 xJ is similarly defined using l x

�
.m mU

Both
5

the 6 7 k
n 8

and, the 9 : k
n ;

are, often called ‘local< =
Lyapunov exponents’ 5,19–23 . To avoid the confu-
sion of this polysemy, we will call the > ? k

n @
‘finite-A

time’
�

since they are completely defined by a finiteB C
k

n D
segment of trajectory and the E ‘finite-sample’F
since they sample the growth of an orientationG

defined
!

by the global dynamics . Both involve the
same linear forward propagator, but each reflects theH I
growth+ of a different orientation: the l x

�
for

�
the1J

k
n K L M N

k
n O P

k
n QR and, the xJ for

�
the S . As k

d T U
both

7 V
1 1 1 1

1 W W X YIf a specific xZ is not of interest, approximation of l x
[

t at1\ ]
xZ t along a numerical trajectory can be simply approximated by a
very long integration of the system and tangent equations for an
arbitrary initial uncertainty. The quality of this approximation may^ _
be

`
unknown, however, see 18 and the discussion in Section 5.

and, a b k
n c

approach, d , yet for the relatively small k
d

1 1

over) which forecasts are typically made their proper-
ties

�
are quite different and neither is constrained by

the
�

value of e .1

3.
f

Properties of localized Lyapunov exponents

General
g

constraints on the relative magnitudes of
the

�
largest and the smallest finite time and finite

sample exponents are now derived from the defini-
tions

�
above, and then illustrated below. By construc-

tion,
�

maximum growth corresponds to , thus1h
k

n i j k l
k

n m n op xJ q r xJ for each xJ , and therefore this in-1 1 s t
k

n u v
equality9 also holds for the mean values w x1y z

k
n { | } ~�

, where � denotes
!

an arithmetic average1
2

¼ � �
taken

�
with respect to the natural measure , and � N

�
a, numerical approximation with sample size N

�
. Ex-

amples, from two chaotic systems are given in Fig. 1.� �
The Henon map 24 is

x� � 1 � ax6 2
¼ �

y� , y� � bx
�

, 6� �i � 1 i i i � 1 i

where@ a6 � 1.4 and b
� �

0.3;
�

the Jacobian is indepen-
dent

!
of y� and, has constant determinant equal to � b

�
.i � �

The
�

Ikeda map 25

x� � 1 � � x� cos< t> � y� sin t> ,
� �   ¡

i ¢ 1 i i

y� £ ¤ x� sin t> ¥ y� cos< t> , 7
¦ § ¨ © ª «

i ¬ 1 i i

with@
6


t> ® 0.

�
4 ¯ 2 2x� ° y� ± 1

and, ² ³ 0.9
�

provides a rather more complex Jaco-
bian,

7
still with constant determinant, equal to ´ 2 in

this
�

case. Note the non-Gaussian shape of all the
distributions

!
in Fig. 1, particularly those for small k

d
.

Contrasting
µ

the shapes of the distributions for the
Henon and Ikeda systems suggests that such distribu-
tions

�
will be strongly system dependent. Also note

how
}

the distributions sharpen with increasing k
d

and,¶
k

n · ¸ ¹
that

�
for given k

d
the

�
distributions of º xJ and,

1»
k

n ¼ ½ ¾¿ xJ differ.
!

1

2 We
À

assume throughout that there exists a unique natural
measure which is well approximated by the numerical iteration of
the system.
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Â
k

Ã Ä Å Æ Ç È É Ê Ë
k

Ã Ì Í Î Ï Ð Ñ Ò Ó Ô Õ Ö
Fig. 1. Distributions of × a , b and Ø c , d in the Henon and the Ikeda systems for k Ù 1 thick , k Ú 4 thin , and k Û 641 1Ü Ý Þ ß
dashed , each with N

à á
4096. The arrows at the top axis indicate . Larger bin widths have been used in the lower panels.N

â

ã ä
k

n å æ
The

�
mean values ç do

!
not increase withN

�
1è é
2

¼
k

n ê ë ì í
k

n î ï
increasing

?
k

d
. In fact ð ñ ò for

�
any k

d
, as1 1

can< be seen by considering the matrix ó ô , the productõ ö
of) Jacobians ÷ ø xJ ,i ù 1,2, . . . ,2 k

d
. Divide ú û intoi

two
�

sub-products ü ý and, þ ÿ , each of length k
d

:

� �
xJ . . . � � xJ � � xJ . . . � � xJ� 	 
 � �  � �

2
¼

k k
n �

1 k
n

1� � � � � �� � � �� � � � �
The first singular value  ! " of) # $ reflects the1

maximumD possible growth over the first k
d

steps; the
first

�
singular value of matrix % & mustD be less than or

equal9 to the product of the first singular values of the

matricesD ' ( and, ) * , thus3 + , - . / 0 1 2 3 4 . The equal-1 1 1

ity holds only if the first left singular vector u 5 6 of)
17 8

is aligned with the first right singular vector 9 :1; < = > ? @
of) A B i.e.

?
u C D 1 , as in the uniform Baker’s1 1E F G H I

mapD 17 and Baker’s Apprentice Maps 7 . FromJ K
Eq. 2 , the largest finite time Lyapunov exponent

3
L

This follows immediately from the singular value decomposi-M N
T

O
tion SVD of a square matrix, P Q R S T U V W , where the super-
script T

O
denotes the transpose of a matrix. X is a diagonal matrix

whose largest entry is Y and Z [ and \ ] are orthonormal rotation1

matrices. Noting that rotation matrices cannot enhance growth
yields the desired result. A brief proof is given in the Appendix
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defined
!

by _ ` mustD be less than or equal to thea
2 k

n b c d
a6 erage8 of) those defined by e f and, g h : i xJ1 1

1 1 1
j k l m n o p

k
n qr s t u vw log x y log z z { | xJ }

1 1 1 1 k
n ~

12
�

k
�

2
�

k
�

2
��

k
n � � � ��

xJ . Similarly, the smallest finite time expo-1 1 �
2

¼
k

n � � �
nent- defined by � � mustD satisfy � xJ � -mU 1
1 � k

n � �
k

n �� � � � � ��
xJ � � xJ . As this is true for eachm kU � 1 mU 12

� �
2 k

n �   ¡ ¢ £
2 k

n ¤ ¥ ¦ §
individual ¨ xJ alternatively, © xJ , the1 i m iª «
meanK of) the largest smallest finite time Lyapunov¬ 
exponent9 will not increase not decrease as k

d
in-

?
creases< by a factor of two:® ¯

2 k
n ° ± ² ³

k
n ´ µ ¶ ·

2 k
n ¸ ¹ º »

k
n ¼ ½¾ ¿ À

and, Á Â Ã . 8Ä Å1 1 m mU
When

Æ Ç È
and, É Ê areË of different lengths, k

Ì
andË

1

k
Ì

, then2 Í Î
k

n
1 Ï k

n
2 Ð Ñ Ò Ó k

n
2 Ô Õ Ö × k

n
1 Ø Ùk

Ì Ú
k

Ì Û Ü
k

Ì Ý Þ
k

Ì ß
9

àá â ã ä
1 2 1 2 1 1 1å æ

k
ç

1 è k
ç

2 é êandË a similar relation is obtained for ë , i.e.,mìí
k

ç î ï ð
k

ç ñ ò ó ô
the

õ
k

Ì ö
k

Ì ÷
areË sub-additive super-additive1 mì

ø ù
sequences of functions 26,27 . While this does notú û

k
ç ü ý þ

guaranteeÿ a monotonic decrease of � or� in-1� �
k

ç � � �
crease� of � with	 increasing k

Ì
, it does implymì


 �
k

ç �  � �
k

ç � �� � �
andË � � � for

�
all k

Ì
, 10

� �
1 1 m mì

proving� that the mean of the � � k
ç �

distribution
�

is not 
1

anË unbiased estimate of the global Lyapunov expo-! "
nent# $ for

�
any finite k

Ì
5,28

%
.1

The
&

mean of the distribution of finite sample
exponents' is equal to ( by

)
definition, independent1 * +

k
ç , -

of� k
Ì
. While in Fig. 1 each . decreases

�
withN

/
10 1 2 3

k
ç 4 5

increasing
6

k
Ì

asË indicated by the arrows , the 7 N
/

1

coincide,� providing a consistency check as to whether8 9
k

ç : ;
N

<
might be large enough so that = approxiË -N

/
1> ?

k
ç @ A

mates the limiting value B .1

C D E F
Fig. 2. Contrasting finite sample Lyapunov exponents abscissa with the corresponding finite time Lyapunov exponents ordinate in theG H I J K L M N

2
O

Ikeda system for k P 1 light grey , k Q 4 grey , and k R 256 black iterations. Note, that in the Ikeda system Det J
S T U

.
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If the Jacobian determinant is constant, then for
allË xW

mX Y
k

ç Z[
xW \ log ] , 11

^ _ ` a b cd
i 2

e
i f 1 g g h

k
ç i j k l

k
ç m n o

where	 p q det
� r s

. Recalling that t xW u v xW1 1w
k

ç x y z {
k

ç | } ~
andË � xW � � xW , it follows that for both them mì
Henon system and the Ikeda system � � k

ç � � � �
k

ç �
,1 1�

k
ç � �

k
ç � � � �

k
ç �� � � � log � � � , and1 2 2 1

� � k
ç � �

max� � � 1 �   log
¡ ¢ £

min� ¤ ¥ 1 ¦ , 12
§ ¨ © ª« ¬  ®

1 x¯ 1 2 x¯ 1

defining
�

a triangle which bounds the distribution of° ±
k

ç ² ³ ´ µ
k

ç ¶ · ¸ ¹º xW , » xW , as illustrated in Fig. 2 for the1 1

Ikeda
¼

map. With increasing k
Ì

the
õ

distributions of
points� approach the line ½ ¾ k

ç ¿ À Á Â
k

ç Ã
. For k

Ì Ä
256,

Å
the1 1Æ Ç

k
ç È É Ê Ë

k
ç Ì Í Î Ï

largest observed value of Ð xW Ñ Ò xW was	
1 1

0.03.
Ó

Yet the widths of each of these distributions
exceeds' 0.3, indicating that this variation stems from
the

õ
different initial conditions on the attractor, not

the
õ

initial orientation.

4.
Ô

Regions of high predictability in chaotic maps

Lyapunov exponents are often said to reflect pre-
dictability,

�
and a positive global Lyapunov exponent

is
6

often said to destroy any hope of ‘long-term’
predictability.� But since they are defined via the
linear propagator Lyapunov exponents need only
quantifyÕ the growth of infinitesimal uncertainties in
the

õ
initial condition, this is a high price to pay for

invariance
6

under a smooth change of coordinate.Ö Ö × Ø
Both

Ù
the Ikeda system Eq. 6 and the HenonÚ Ú Û Ü

system Eq. 7 are considered chaotic for the pa-
rameters considered above, since in each case it isÝ

k
ç Þ ß à

believed
)

that á â 0;
Ó

yet this does not imply ã xW1 1ä
0

Ó
for any finite k

Ì
. Indeed it is clear from Fig. 2å

that
õ

there are many points on the attractor about 1.5æ
% of the Ikeda system for which the leading k

Ì ç
1

finite
�

time exponent is negative, i.e. there are states
aboutË which eè eryè infinitesimal

6
uncertainty will

shrink regardless of its orientation.
We

é
now proceed to locate the corresponding re-

gionsÿ in state space with negative largest finite time
Lyapunov

ê
exponents, ë ì k

ç í î
0,

Ó
which we interpret as1

likely regions of relatively high predictability: allï
infinitesimal

6
initial uncertainties will decrease

ð
in

6ñ ò
these

õ
regions. Recently 9,29 , similar regions haveó ô

been
)

determined analytically in the Lorenz 30 sys-õ ö ÷ ø
tem

õ
see also 20,31 ; we now present new results

for the Ikeda system and the Henon system. Thisù ú
resultû is then demonstrated numerically to hold in
several cases for finite uncertainties, but the exact
results below are subject to the caveat of infinitesi-
mal uncertainties, as are all general arguments re-
gardingÿ the prediction of deterministic chaotic sys-
tems.

õ

4.1. Infinitesimal uncertainties

Naturally,
ü

exact results are most easily obtained
for small k

Ì
. Therefore we consider only k

Ì ý
1 and

k
Ì þ

2 analytically; numerical results are given forÿ
1 � � �larger

¡
values. In a map � xW � 0

Ó
implies that the1 � �

largest
¡

singular value of the Jacobian � � xW
is less than one. For the Ikeda system with 	 in
� �
the

õ
range 13  3 � 2 � � � 1, the one-step finite�

1 � � �time
õ

Lyapunov exponent � xW passes� through1

zero� at two circles about the origin with radii ro� , i
2

e
2

� �� 6
�

c� � 1 � 6
�

c�  1 ! 1 where c� " # $ %& '( ) *
1 + , -. 1 . In this case / xW 0 0

Ó
for all points either1

2 2
e1 2

within	 the inner circle i.e. those with x3 4 y5 6 ri
2 2

7 8
or� outside the outer circle i.e. x3 9 y5 : r . Fig. 3o�
shows points on the Ikeda attractor where the sign of;

1 < = >?
xW is

6
indicated by the grey scale. For @ A 0.9,

Ó
1 B

the
õ

radii are r C 0.135
Ó

and r D 7.404
E

thus thisi o

attractorË lies well within r , and the outer circle iso�F G G
not# visible in Fig. 3 . As H approachesË one, the
radiusû of the inner circle goes to zero.

In the Henon system there are no regions in which
every' uncertainty will shrink after one iteration, thatI

1 J K Lis,
6 M

xW N 0
Ó

for allï xW . As shown below, this is not1

the
õ

case for O P 2
e Q

, however. The smallest value of1R
1 S T UV

xW is found for points xW on� the y5 -axis. Here1W
1 X Y Z[

xW \ 0,
Ó

and thus all uncertainties shrink except1

those
õ

aligned with , which remain unchanged in1

magnitude.� Note that for points on the y5 -axis, is
6

1

parallel� to the y5 -axis. We now prove that there exist]
2 ^ _ `aË finite region within which all points have a xW1b

0;
Ó

the region includes a portion of the first preim-
ageË of the y5 -axis.
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d
1 e f gFig. 3. Regions of decreasing uncertainty in the Ikeda system. Points on the attractor are colored grey if h xi j 0, black otherwise. Within1k

1 l m nthe circular region near the origin, o xi p 0 for all xi .1

The preimage of the yq -axis is the parabola, yq r
axs 2 t 1, and the two step propagator for pointsu

2
e vw

,as x y 1 is

z { |
,as } 2

e ~
1 ,k

Ì �
2

Å � � �
x3 � 0

� � �
x3 � �� � � �� �� �

1 0�
2

Å
as � 10 1

��
b

�
0

�
b

�
0

�
b

�
0

�� ,� 2 abs � b
�

where	 we have used the fact that in the Henon� �
system � � xW is only a function of x3 . To locate
those

õ
x3 with	 � � k

ç �
2 �   0,

�
we determine the singular1¡ ¡

2 ¢ ¢ 2values£ ¤ of� ¥ ¦ § ,as ¨ © 1 ,k
Ì ª

2 , noting that «i i

¬  , where ® areË the roots of the characteristici i

polynomial� of ¯ ° T± ² . Thus³ 2 ´ 2b
� 2 2 as 2µ 2 ¶ 1 · ¸ b

� 4 ¹ 0.
�

13
º »¼ ½

We
é

can now test whether ¾ 2
e ¿

1 for any À ;
alternatively,Ë we can solve for Á Â 1 to find

b
� 2

e Ã
1 0.91Ä Å Æ

1 Ç È É Ê Ë Ì 1.083 14
Í Î Ï Ð

2 abs 0
�

.84

for as Ñ 1.4, b
� Ò

0.3.
�

Note that the parabola and theÓ Ô
xÕ -axis intersect at the point 0,-1 . At this intersec-
tion

õ
xÕ Ö × Ø 0

�
and it follows from the equation

aboveË that Ù Ú k
ç Û

2
e Ü Ý Þ ß

k
ç à

2
e á â

b
� ã

1 or, equivalently,1 2
1

ä
k

ç å
2

e æ ç
k

ç è
2

e éê ë
that

õ ì í
log

¡
b

� î ï ð
0.

�
Showing that a1 2 22

point� is negative in the range given by Eq. 14 proves
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that
õ

all points on the parabola within these limits
have ò ó k

ç ô
2 õ ö 0.

�
By continuity, there exists a finite1

regionû in the neighborhood of the parabola for

1 ÷ b
� 2

e
1 ø b

� 2
eù ú xÕ û ,

2 abs 2 abs
within	 which the largest two-step finite-time Lya-
punov� exponent is negative. A numerical estimate of
this

õ
region is shown in Fig. 5 a.

What
é

about larger values of k
Ì

? Trajectories pass-
ing through this region of ü ý 2 þ ÿ 0

�
are often found to1

have
� � � k

ç � �
0

�
for k

Ì �
2

Å
as well; negative values of1�

4
� � 	 
�

areË clearly visible in Fig. 1 a . In the following,1

we	 will illustrate the relation between the trajectories
of� points on the attractor with �  k

ç � �
0

�
for k

Ì �
2

Å
and1

the
õ

yq -axis; namely that such points tend to lie near

preimages� of the yq -axis. The first three preimages of
the

õ
xÕ -axis can be obtained analytically. The yq -axis is

the
õ

preimage of the xÕ -axis, while the parabola noted
aboveË is the first preimage of the yq -axis. The first
preimage� of the parabola is

22 2
e

as � � 1 as � � 1
� �

xÕ � , yq � � � 1 � as ,
b b

�
1 � b

� 2 1 � b
� 2� �  ! .

2
Å

abs 2
Å

abs
The first 4 preimages of the xÕ -axis are shown to-
getherÿ with the attractor in each panel of Fig. 4,
while	 points on the attractor with " # k

ç $ %
0

�
are shown1

for the specific values k
Ì &

2,3,4,5 in the four panels.

' (
Fig. 4. All panels show the Henon attractor, the x-axis, the y-axis and its last three preimages: the parabola solid line , its second preimage) * + , -

k
. / 0 1 2 3

long dashed and its third preimage short dashed . The different panels show points on the attractor with 4 5 0 for k 6 2 a ,k 7 3 b ,18 9 : ;
k < 4 c , and k = 5 d .
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It
¼

is clear that the regions with ? @ k
ç A B

0
�

are related to1

the
õ

intersections of the attractor and preimages of the
yq -axis. We next show that this is even more evident
for

�
initial conditions in the general vicinity of the

attractor.Ë As in Fig. 4, Fig. 5 shows both the preim-
agesË of the xÕ -axis and the attractor; in addition, test
points� for which C D k

ç E F
0

�
are plotted as well, where1

the
õ

test points were drawn at random from the region
shown in this figure. Points with decreasing uncer-
tainties

õ
for k

Ì G
5

H
are found in the vicinity of preim-

agesË of the yq -axis, i.e. they often have trajectories
which	 include a near approach to the yq -axis. Typi-
cally,� this occurs towards the end of that trajectory:
points� with I J 2

e K L
0

�
are close to the first preimage of1

the
õ

yq -axis, points with M N 3 O P 0
�

are close to its first1

andË second preimage and so forth.

Next,
Q

we investigate the behavior for even largerR S
k

Ì
in

6
the Henon system. Grassberger et al. 16 showed

that
õ

one should expect T U k
ç V W

0
�

for arbitrarily large1

k
Ì

, assuming a behavior essentially like averages of
randomû variables correlated only over short times.
This

X
general picture is correct although the details

areË sometimes important, as we have argued else-Y Z
where	 15 . Here, we conjecture that, due to the
deterministic

�
nature of the Henon system, this frac-

tion
õ

of [ \ k
ç ]

decreases
�

more quickly than the random1

variable£ argument would suggest. As shown in Fig.
6,

�
the fraction of initial conditions on the attractor

with	 ^ _ k
ç ` a

0
�

is observed to decrease exponentially1

with	 k
Ì

, as are the corresponding fraction when linear
propagators� of the map are combined at random. The
random case for k

Ì b
1,2,4 and 8 are shown; for each,

c d
Fig. 5. All panels show the Henon attractor, the x-axis, the y-axis and its last three preimages: the parabola solid line , its second preimagee f g h i

k
. j

long dashed and its third preimage short dashed . The different panels show points in the vicinity of the attractor with k l 0 for k m 21n o p q r s t u
a ,k v 3 b , k w 4 c , and k x 5 d .
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z { |
k

. } ~ �
Fig. 6. For the Henon system a � 1.4,b � 0.3 , the fraction of points with � � 0 as a function of k in the deterministic case squares .1

Also shown are the results for random matrices, where the matrices are drawn from the distribution of the linear propagators of the Henon
map, that is � � � j

� �
, for j

� �
1,2,4 and 8. The solid lines reflect the best fit to an exponential decay over the range 8 � k � 40. For large k,

about 230
�

iterations of the map where considered in the deterministic case. Note, that determinism is a strong constraint reducing the
likelihood of finding negative finite time exponents.

the
õ

fraction decreases less quickly than in the deter-
ministic� case. Disregarding the determinism in the
series of Jacobians leads to frequencies of negative� � k

ç �
which	 for the larger k

Ì
exceed' those of the1

deterministic
�

case by orders of magnitudes.

4.2. Finite uncertainties

From
�

the practical point of view of estimating
predictability,� the knowledge of such points would
be

)
of limited utility for large k

Ì
, since the shrinking

region around each point may be very small. Further,
recall that all estimates of predictability based upon
Lyapunov

�
exponents assume an infinitesimal initial

error.' Therefore, we next consider finite uncertainties
explicitly,' first exploring Gaussian distributed uncer-
tainties

õ
in the Ikeda map, and then uncertainties of

uniform� magnitude in the Henon map. In each case
we	 allow the expected magnitude of the error to vary
andË discuss the relation between regions of enhanced
predictability� and the regions where � � k

ç � �
0.

�
1

In
¼

the Ikeda map, we consider normally dis-
tributed

õ
uncertainties in each coordinate of the initial

condition� with zero mean and the same standard
deviation

� �
. Taking a point on the attractor at ran-

dom,
�

128 ‘observations’ were generated and pre-
dicted

�
forward k

Ì
steps; if the distance from truth at

final
�

time was less than the initial perturbation ap-
plied� in more than 50% of the 128 cases, then the
original� point on the attractor was considered to be�
within	 a region of high predictability for that value� � �
of� � . For k

�  
1 there is a region not shown of

high
¡

predictability centered on the circle derived
above¢ and shown in Fig. 3. Points of high pre-
dictability

£
have been observed for ¤ ¥ 2 ¦ 9

§
and¢ per-

1sist for ¨ © . While all are near the origin, many8

fall
ª

outside the circle, but this is not surprising as the
definition

£
of high predictability in this numerical

experiment« is much less restrictive than requiring a
negative finite time Lyapunov exponent, which guar-
antees¢ 100% of the uncertainties to shrink if they
have

¡
infinitesimal magnitudes. The same tests for

k
� ¬

4 are shown in Fig. 7. The results based upon
infinitesimal uncertainties shown in the upper left
panel� are seen to reflect the region of high pre-
dictability

£
very well up until  ® 1 ¯ 8, which is a fair
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Fig. 7. All panels show the Ikeda attractor; the dots represent the
attractor. Initial conditions on the attractor with enhanced pre-
dictability are marked with a ‘ ± ’ when more than 50% of 128
initial uncertainties show decreased magnitudes at final time
k ² 4. The different panels reflecting different initial magnitudes
eps are contrasted with the linear dynamics in the upper left panel.

fraction of the diameter of the attractor. We stress
that

³
results of this kind will be extremely system

specific.
For

�
the Henon map the portrait of negative ´ µ 4

� ¶
1

revealed in Fig. 5 is contrasted with regions of high
predictability� for finite uncertainties in initial condi-
tion

³
with a much sharper test than for the Ikeda map.

In
¼

this case each observation is placed at random on
a¢ circle of radius · about¢ the true state; 1000 such
‘observations’ were considered for each true state
and¢ only if the final time distance of e¸ ery¸ one of�
them

³
was less than ¹ was	 the point recorded as

‘high predictability.’ This is shown for 3 different
initial magnitudes in Fig. 8. For small magnitudes,º » 0.001,

�
the cartography is quite similar to that of

infinitesimals; of course, structures smaller than ¼
cannot� be detected. It becomes harder to identify
regions½ with differing properties in predictability with
increasing prediction time; sensitive dependence on
initial condition will limit the prediction of pre-
dictability

£
as well as prediction itself.

Thus
X

far, we have only considered the value of an
exponent« ats a¢ particular value of k

� ¾
K

¿
; alterna-

tively
³

one might consider regions in which the expo-
nent is negative for all k

� À
K , with corresponding

uncertaintiesÁ decreasing monotonically for the total
duration

£
of K

¿
iterations.

Â
While such subsets are of

interest, they are not investigated here since the
existence« of small positive values at intermediate k

�
are¢ consistent with regions of high predictability;
indeed

Â
the points omitted from the set of points for a

particularÃ k
�

are¢ those that are said to display ‘returnÄ Å
of� skill’ in meteorology 32 . Although beyond the
scope of this paper, it would be interesting to exam-
ine

Â
the spatial distribution and fraction of initial

conditionÆ in these subsets, both as a function of k
�

and¢ the magnitude of the initial uncertainty.

4.3. Coexistence of chaos and regions of high pre-
dictability

Ç

Another
È

interesting aspect concerning the regions
withÉ Ê Ë k

Ì Í Î
0

�
is the interplay between these regions1

and¢ the location of unstable periodic orbits, which
are¢ believed to form the skeleton of the attractor inÏ Ð
manyÑ chaotic systems 33 . Clearly, an unstable pe-
riod-k

�
orbit� cannot contain a point within a region

for which Ò Ó k
Ì Ô Õ

0,
�

since that point would then be1

stable. In short, each point on each unstable period k
�

orbit� must avoid all regions of the state space in
whichÉ Ö × k

Ì Ø Ù
0:

�
it is not easy to see how this comes1

about¢ if the
³

orbits are dense on the attractor ands the
³

area¢ of the regions does not vanish. If the regions do
notÚ vanish, then this observation suggests a new
angle¢ from which to view the extreme sensitivity of
the

³
structure of the attractor to small changes in

parameterÃ value.
It

¼
is also interesting to consider the implications

positiveÃ Û Ü k
Ì Ý

mightÑ have on numerical results when1

the
³

true attractor is a stable attracting periodic orbit;
no point in a periodic orbit need lie in a region for
whichÉ Þ ß k

Ì à á
0.

�
For as â 1.37511006867,b

� ã
0.3,

�
the1
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Fig. 8. All panels show the Henon attractor; the dots represent initial conditions with enhanced predictability for finite uncertainties. Theå æ ç è é ê ë ì
different panels belong to different initial magnitudes of initial uncertainty: a eps í 0 thus coinciding with Fig. 5c . In panels b , c , andî ï
d , a dot at xi indicates that the distance between the image of the true state and each one of 1000 inexact ‘observations’ decreased at

k ð 4. The observations were initially distributed on a circle of radius eps centered on xi .

Henon system has a stable period 24 orbit. The
majority of points on this orbit have ñ ò 24 ó ô 0,

�
but1

for
ª

several, õ ö 24
÷ ø ù

0;
�

the largest observed value is1ú û 24
÷ ü ý

0.3,
�

implying a magnification factor of more1

than
³

a hundred within one cycle. When þ ÿ is non-
normal, the magnitude of the leading singular value
mayÑ be quite large regardless of whether or not the
orbit� is asymptotically stable. With a slight increase
in as the

³
system appears chaotic; the dynamics still

resemble those of the stable orbit, but the attractor
nowÚ consists of 24 small, clearly separated chaotic
‘regions,’ each visited in turn. It would be interesting
to

³
examine the distribution of leading singular values

about¢ stable periodic points on the same orbit, as a
function of parameter; is there a positive lower bound
on� the angle between these eigenvectors?

This
X

observation suggests an interesting possible
parallel� between these simple two dimensional maps
and¢ the onset of turbulence in laminar fluid flows. It
has long been known that shear flows can become
turbulent

³
at Reynolds numbers well below the criti-

cal� value as defined by the classical linear stability� � �
theory

³
based on eigenvalues 34 and references� � �

thereof;
³

for a recent overview see 35 . Perturbations
in the directions of the singular vectors may grow� 	
rapidly½ for a finite time, exciting nonlinear terms
and¢ thereby dominating the onset of turbulence; the
long



term behavior described by the eigenvalues

becomes
�

irrelevant. Non-normality might hold simi-
lar consequences for the numerical iteration of non-
linear



systems. The smallest nonzero numerical� per-�

turbation
³

is finite, being defined by the numerical
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grid;� and it could be quite difficult to identify a
stable period k

�
orbit� with � � k

� � �
0

�
by numerically1

iterating
Â

the map. The smallest nonzero numerical
perturbation� might well grow sufficiently to bring
the

³
nonlinear terms into play, resulting in sustained,

complicated� dynamics up to the time-scales at which
the

³
numerical orbit closed exactly upon itself, as all� �

trajectories
³

on digital computers will 36 . We do not
claim� that this is the case in the maps considered
above,¢ but merely note the dynamics might appear
similar and thus stress the value of performing a
bifurcation

�
analysis in addition to numerical itera-

tion.
³

5.
�

Discussion and conclusions

The
X

results presented in this article hold implica-
tions

³
for two questions of general interest: the ap-

proximation� of largest Lyapunov exponent � and¢
1

the
³

estimation of likely forecast accuracy. Noting� �
k

� � �
that

³
the finite time Lyapunov exponents � can�

i

be
�

computed accurately by standard methods, a lower� �
k

� �  
bound

�
on the error in assuming ! " # isN

$
1 1% &

k
� ' ( ) *

2
÷

k
� + , - .

k
� / 0

given� by 1 2 3 4 5 , while 6 pro-�
N N

$
1 1 1

vides7 an upper bound on 8 . When a good approxi-1

mation of the ‘Lyapunov vector’ l
9

is available, one1

can� also require for the difference between finite: ; <
k

� = > ? @
k

� A B C
sample and finite time exponents D E F1 1G H

. Yet since both l
9

and¢ I are¢ multiplicative1 1J K
ergodic« statistics 1 , uncertainty in numerical esti-L M
matesÑ of l x

9
remains½ largely unquantified. Simi-1

larly,



inasmuch as matrix multiplication does not
commute,� attempts to estimate the uncertainty in N 1

via7 the standard bootstrap approach must be treatedO P
withQ care for deterministic systems 15 . The goal of
a¢ sufficient condition for the convergence of R 1

estimates« remains allusive. Quantitative necessary
conditions,� along with explicit tests for convergenceS
in

Â
aleatoric systems stochastic systems with positiveT U VW

are¢ discussed elsewhere 28,37 .1

In terms of identifying the ‘worst forecast bust’,
the

³ X
are¢ more important than the Y simply be-1 1

cause� the Z are¢ larger. While it is sometimes argued1

that
³

the corresponding singular vectors may point
‘off the attractor’, the [ remain relevant, as possible1

uncertainties\ about the true initial state will also lie
‘off the attractor’, almost certainly. Infinitesimal un-

] ^
certainties� along l x

9
have the advantage to be free1

of� transients, but if of finite magnitude they also may
lie



‘off the attractor’. And even for finite uncertain-

ties
³

‘on the attractor’, finite time growth is not bound
by

� _
. These facts imply that the ‘super-Lyapunov’1 ` a

growth� found by Nicolis et al. 8 is to be expected:
after¢ time tb an¢ uncertainty may be magnified by
moreÑ than the larger of 2 c 1 t and¢ 2 d 1 t, even if the
initial

Â
uncertainty is infinitesimal. Over what dura-e f

tion
³

can realistic i.e. operational uncertainties be
treated

³
as infinitesimal? Or equivalently, what is the

extent« of the linear
g

regime? This is an interesting
and¢ open question, even in numerical weather fore-h i
casting� 38 .

Note
Q

that computing exponents for finite time is
somewhat gratuitous in that anys increase will yield a
positive� effecti¸ e¸ exponent;« a positive exponent im-
plies� effectively exponential growth then only in the
limit of infinite time. For finite time, a positive
exponent« implies growth, but not exponential growth;
it

Â
only reflects the time dependence of the uncer-

tainty
³

under the additionals assumption¢ that the
growth� was exponential. The width of the distribu-
tions

³
in Figs. 1 and 2 does not indicate uniform

exponential« growth on these time scales. An alterna-
tive

³
approach to quantify predictability by computing

the
³

time required to reach an uncertainty threshold isj k
contrasted� with the use of effective rates in 7,9 ,
whereQ examples with both

�
large l ands large uncer-1

tainty
³

doubling times are discussed. As proven in
Section 4, there are initial conditions for which no�
perturbations� grow for two paradigm attractors; it
wouldQ be interesting to investigate the relative loca-
tion

³
of regions within which m n k

� o p
0

�
and unstable1

period� k
�

orbits� for large k
�

, as a function of parame-
ter

³
in a variety of low dimensional maps; the numer-

ics near stable period k
�

points� with q r k
� s t

0
�

may1

also¢ prove of interest.
In

u
this paper each system has been considered in

its natural state space, its original, physically rele-
vant7 co-ordinate system. It should be noted, that
neitherÚ the typical measures of forecast error 4 nor
the

³
finite time Lyapunov exponents nor the finite

sample Lyapunov exponents are invariant under co-

4 v wSee 39 for an atypical approach.
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y
ordinate� changes or even changes in a Riemannianz
metric . In this study, the forecast error is simply the
Euclidean distance between two points in state space,

T
{ {

specifically, | } ~ � � � whereQ � � is
Â

the identity
matrix.Ñ The singular vector corresponding to the
largest finite time exponent maximizes this distance
at¢ prediction time k

�
. There may be physically more

relevant½ definitions of distance between two fore-
casts.� Then the identity might be replaced by another
Riemannian metric � � , for example the inverse of
the

³
covariance matrix may serve as a natural choice

whenQ the different directions in state space display
different

£
variances. Alternatively � � mayÑ be used to

account¢ for different levels of noise on different state
space variables, to target the variables whose predic-
tion

³
is of particular concern, or even to decide which

variables7 to observe in order to minimize the predic-� � � �
tion

³
error see 40 and references therein . The

application¢ determines the choice of metric.
In conclusion, we again stress that the relevance

of� alls three types
³

of exponent is restricted to cases
whereQ the uncertainties are sufficiently small that
their

³
growth is well approximated by the linear� �

propagator� 38 : � � is exact only for infinitesimal� �
uncertainties.\ Behavior of larger finite uncertainties
requires½ the use of ensembles of initial conditions,
each« consistent with the observation; the relative
performance� of ensembles in the subspaces defined
by

�
are¢ contrasted with those defined in the sub-1 � �

space defined by l
9

for several chaotic flows in 9 .1

The
X

construction of ensembles for forecast evalua-
tion

³
in imperfect models remains an important issue

for all nonlinear systems.

Appendix A.

Here
�

we establish that for a product of matrices� � � � � � �
weQ have � � � �   ¡ ¢ £ ¤ ¥ .1 1 1 ¦ §

The spectral norm of a matrix 14 is defined by¨ ¨ © ª « ¬ ® ¯
max ° ± x x² whereQ the maximum is takenx³ ´ 0

µ
over� all nonzero vectors x² . It bounds the amplifying¶ ¶ · ¸ ¹ º
power� of a matrix, i.e., » ¼ x² ½ ¾ ¿ x² . The spectral
norm of a rotation matrix is 1, while that of a
diagonal

£
matrix corresponds to the maximum ele-

ment.Ñ The singular value decomposition decomposes
any¢ square matrix into the product of a rotation

matrix,Ñ a diagonal matrix, and another rotation ma-
trix,

³
hence the spectral norm of a matrix is identicalÀ À Á Â

to
³

its first singular value, Ã Ä Å Æ . Given Ç È É Ê Ë Ì Í ,1

then
³

for any nonzero x² weQ have
Î Ï Ð Ñ Ò Ó Ô Õ Ö Ö × Ø Ù Ù Ú Û Ü ÝÞ ß

x² à á â x² ã ä å æ ç x² è é ê ë ì x² í î ï ð ñ x² .
ò ó

ô ô õ ö ÷ ÷
Dividing by x² , substitution yields ø ù ú û ü1ý ý þ ÿ � � � � � �� � � 	 
 � �  � � � �

as¢ desired.1 1
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