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Abstract 

Current projections of long-term trends in Atlantic hurricane activity due to climate change 

are deeply uncertain, both in magnitude and sign. This creates challenges for adaptation 

planning in exposed coastal communities. We present a framework to support the 

interpretation of current long-term tropical cyclone projections, which accommodates the 

nature of the uncertainty and aims to facilitate robust decision making using the information 

that is available today. The framework is populated with projections taken from the recent 

literature to develop a set of scenarios of long-term hurricane hazard. Hazard scenarios are 

then used to generate risk scenarios for Florida using a coupled climate-catastrophe modeling 

approach. The scenarios represent a broad range of plausible futures; from wind-related 

hurricane losses in Florida halving by the end of the century to more than a four-fold increase 

due to climate change alone. We suggest that it is not possible, based on current evidence, to 

meaningfully quantify the relative confidence of each scenario. The analyses also suggest that 

natural variability is likely to be the dominant driver of the level and volatility of wind-related 

risk over the coming decade; however, under the highest scenario, the superposition of this 

natural variability and anthropogenic climate change could mean notably increased levels of 

risk within the decade. Finally, we present a series of analyses to better understand the 

relative adequacy of the different models that underpin the scenarios and draw conclusions for 

the design of future climate science and modeling experiments to be most informative for 

adaptation.  

 

 

 

1. Introduction 

                                                 
1 Corresponding author:  Houghton Street, London, WC2A 2AE; email: n.ranger@lse.ac.uk. 
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Damages related to tropical cyclones on the US Atlantic and Gulf coasts have spiraled 

upwards over the past few decades as populations and assets have become increasingly 

concentrated in exposed coastal regions (e.g. Pielke and Landsea 1998). There is insufficient 

evidence to confirm whether or not anthropogenic climate change (hereafter, referred to as 

climate change) has contributed to the increase in past damages (e.g. Neumayer and Bartel, 

2010). But there are indications that climate change may exacerbate hurricane risk in the 

future. There is an urgent need to consider future hurricane risk in long-term planning and 

policy decisions, for example, over how and where new properties and infrastructure are 

developed, as decisions made today that are appropriate to current climate could lock-in 

substantial future exposure and vulnerability in a changed climate. The challenge for decision 

makers is that the future characteristics of tropical cyclone hazards are uncertain, particularly 

at a regional level.  

 

Knutson et al. 2010 reviewed current evidence and concluded that globally, climate change is 

likely to lead to either a reduced, or essentially unchanged, tropical cyclone frequency, 

alongside an increase in average maximum wind speeds. There is lower consensus over 

projections for individual ocean basins. For the Atlantic Basin, of the twelve studies reviewed 

by Knutson et al. 2010, around one third predict an increase in frequency and two-thirds a 

decrease. Studies concerning the intensity of tropical cyclones are more challenged by the 

resolution of current global climate models, so called general circulation models (GCMs), 

which is not yet sufficient to simulate the most intense storms (Emanuel 2008). The majority 

of the studies reviewed by Knutson et al. project, on average, an increase in storm intensity in 

the Atlantic Basin, although a minority of individual GCMs used in these studies do project 

reductions (where different studies use alternate metrics, including the frequency of the most 

intense storms, the potential intensity or maximum wind speeds). Many other characteristics 

relevant to risk estimation are even more uncertain; for example, changes in the distribution 

of tropical storm tracks, genesis locations, speeds, sizes and landfall locations. Knutson et al. 

reported that few studies have explored the affects of climate change on these characteristics 

and there is little consensus in projections. 

 

While it is important to continue to refine projections, some types of adaptation decisions can 

not be delayed until there is greater certainty in long-term hurricane prediction; for example, 

greater certainty in projections could take more than a decade to achieve (e.g. Zickfield et al. 

2010) and meanwhile infrastructure and development planning decisions made today will 

affect risk levels for many decades to come. This paper seeks to provide an informative set of 

scenarios of wind-driven hurricane risk based on peer-reviewed science and modeling 

available today. This paper is only a first step towards an informative set of scenarios; firstly, 
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it does not address all uncertainties, only those related to the future frequency and intensity of 

tropical storms in the Atlantic Basin, and secondly, the scenario set will be refined over time 

as new information becomes available. The following two sections describe the framework 

and methodologies used for generating the scenarios. Sections 4and 5 analyze the hazard and 

risk scenarios.  

 

Scenarios of future states have long been used in the management of natural hazards, as well 

as decision-making more broadly. Van der Heijden (2005) suggests that such scenarios can 

serve as a “test-bed for policies and plans” as well as guiding future research to refine 

projections. Section 6 will briefly discuss the first of these applications, how the scenarios can 

be used to inform adaptation planning; though most focus in the discussion will be placed on 

the second application, using the scenarios to consider how future climate science and 

modeling experiments could be best designed to be most informative for adaptation. 

 

2. The Framework 

A scenario is a description of a possible future state; in this case, a possible future tropical 

cyclone climate. Appropriate model selection is crucial in generating a set of scenarios to 

inform decision making. Groves and Lempert (2006) and van der Heijden (2005) suggest that 

a set of scenarios should aim to explore all the most significant driving forces affecting future 

risks and decisions and be representative of the range of possible future outcomes. Several 

other authors have also noted the importance of including extreme scenarios in decision 

analysis (Parson 2008; Groves et al. 2007a; Hallegatte 2009; Morgan 2003) and this was an 

important lesson learnt from the Thames Estuary 2100 project in the UK, which used a 

scenario-based approach to design a new tidal flood protection system for London for the 21st 

century (Lowe et al. 2009). 

 

For these reasons, the framework aims to select models to represent the widest possible range 

of plausible future states for the key determinants of future wind-related risk. A condition 

imposed on this range, after Lempert et al. 2003, is that the scenarios are scientifically 

plausible and rigorous; which we define as being based on modeling and approaches that are 

grounded in scientific theory and published in the peer-reviewed literature. 

 

Van der Heijden (2005) suggests that a framework for developing scenarios can be derived 

from identifying key events or stages of uncertainty that will drive the scenario progression. 

Scenarios can then be developed that systematically explore the range of consequences of 

these events or stages. We suggest there are three major stages of uncertainty in projections of 

long-term tropical cyclone activity in the Atlantic Basin (after Jones 2000). The first (I) is the 
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emissions scenario uncertainty; this is discussed in Section 3. The second (II) is uncertainty in 

the response of the large-scale (global to ocean basin-scale) climate and ocean environment to 

manmade emissions. In current projections, this uncertainty stems from missing processes and 

the parameterization of processes in global climate models (McAvaney et al. 2001, Randall et 

al. 2007). The third stage (III) is the uncertainty in the link between the ocean basin-scale 

environment and basin tropical cyclone activity. We distinguish the second and third stages 

because these are generally treated by different models; computational constraints mean that 

the resolution of global models (even of the highest-resolution models available) is 

insufficient to simulate all the processes involved in tropical cyclone development and for this 

reason downscaling models are used to project changes in regional tropical cyclone 

characteristics for a given large-scale environment. These downscaling models add an 

additional layer of uncertainty (Emanuel 2008, Maraun et al. 2010).  

 

Metric 

Time

Statistical Models

Dynamical Model Ensemble 1

Historical Variability

Dynamical Model Ensemble 2

Theoretical Limits (not explored)

 

Figure 1: Schematic diagram illustrating the framework for scenario generation. The grey wavy lines 

signify that it is not possible to exclude scenarios outside of the ranges indicated by the scenarios.  In 

reality, the evolution of the metric is unlikely to be a smooth progression as suggested by this diagram. 

 

The scenarios available in the recent scientific literature generally fall into two types that 

roughly reflect the van der Heijden (2005) framework. The first type utilizes a range of 

projections of the large-scale environment sourced from multiple GCMs (i.e. the stage II 

uncertainty), but only a single representation of the link to basin tropical cyclone activity 

(stage III), typically using a dynamical downscaling model; that is, a higher-resolution 

regional model that simulates the tropical cyclone climatology conditioned on a particular 

GCM projection. These scenarios are denoted “Dynamical Model” scenarios. The second type 

also uses a range of GCM projections, but explores a broader range of the uncertainty in the 

link to basin tropical cyclone activity (stage III); typically using simpler downscaling 
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approaches. For example, Vecchi et al. 2008 presents a set of simple models which utilize 

statistical downscaling techniques (based on only one or two predictors) coupled with a range 

of GCM projections. These scenarios are denoted “Statistical Model” scenarios. Few studies 

explore more than one emissions scenario.  

 

In this study, we utilize both of these types of scenarios. The Dynamical Model scenarios 

represent the ‘state-of-the-art’ in current long-term prediction. These are complemented by 

the Statistical Model scenarios, which have the advantage of representing a broader range of 

the uncertainty. While the models underlying the Statistical Model scenarios are simpler than 

those used by the Dynamical Model scenarios there is evidence that they provide adequate 

predictions of basin-scale tropical cyclone frequency and intensity over the near- and long-

term (Emanuel, 2005, Hoyos et al. 2006). They also have the advantage of being directly 

driven by large-scale climate variables (such as basin-scale sea surface temperatures) in which 

one can have greater confidence than in the grid-scale variables used by the dynamical 

downscaling approaches.  

 

For decision support, it is important to recognize that the upper and lower bounds on future 

risk suggested by the range of scenarios generated here are not the true limits to the space of 

all plausible future states. For example, while the Statistical Models could be interpreted as 

capturing the bounds of plausible changes in hurricane activity given a specific large-scale 

climate projection (the stage III uncertainty), the GCMs on which these projections are based 

represent only a lower-bound on the true range of (the stage II) uncertainty (e.g. Oreskes et al. 

2010; Stainforth et al. 2007a,b; Morgan 2003). For example, Knutti et al. 2010 describes that 

current GCMs share many common structures and attributes, which means they are not 

independent and provide only a limited sampling of the uncertainties in the models. The level 

of confidence in the range of future states suggested by the scenario set decreases with both 

prediction lead time (e.g. Cox and Stephenson, 2007; Hawkins and Sutton, 2009) and the 

deviation of predicted variable from its current level because the GCMs as well as the 

downscaling models are tuned towards the present-day climate. 

 

In this study, the breadth of the scenario set is constrained by the condition that modeling and 

approaches are grounded in scientific theory and published in the peer-reviewed literature. 

Our constraint is supported by Lempert et al. 2003, which suggests that an ensemble of 

scenarios should aim to “provide the greatest possible diversity of plausible futures consistent 

with available information”. Transparency about the nature of the uncertainties is essential 

for decision support as this can enable a decision maker to select an appropriate interpretation 

of the scenarios; for example, where the scenario set is less well constrained, she may opt for 
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a more robust strategy.  Parson 2008 and IPCC 2005 suggest that the types of information that 

are important to provide are the sources of uncertainty in scenario generation and the drivers 

that could mean that in reality the future state is outside of the range suggested by the set. 

 

Finally, the scenarios aim to represent only the component of annual changes in risk driven by 

climate change. Another important driver of risk and uncertainty, particularly over short 

timescales, is natural variability. The annual average frequency and intensity of tropical 

cyclones in the Atlantic Basin is highly (naturally) variable on annual, multi-annual and 

decadal timescales, driven by chaotic weather processes and natural cycles (Goldenberg et al. 

2001). In this study, projections are presented as 5-year average time slices. This averaging 

removes annual variability in hazard and risk levels but does not remove decadal variability. 

The amplitude of decadal variability simulated in GCMs tends to be smaller than is observed 

(e.g. Gillet et al. 2008) and this means that decadal variability should be considered in 

addition to the climate change trends presented in this research. The implications of this are 

discussed in Section 4.  

 

The amplitude of natural variability on a decadal to multi-decadal time scale, which 

historically has been associated with significant shifts in the level of damages experienced by 

coastal communities around the Atlantic, provides a useful benchmark against which to assess 

the scale of climate change. In this study, the range of natural variability is represented as the 

difference between the observed activity levels in recent active and inactive periods (defined 

as 1995-2010 and 1972-1994, respectively) based on data from the HURDAT database 

(Landsea et al. 2004). 

 

2.1 Identifying “Decision-Relevant” Metrics 

The design of a scenario set can not be independent of its application. To guide scenario 

design, this study takes the illustrative case of an evaluation of residential property 

development policies in Florida to protect against wind-related hurricane damage; a case of a 

long-lived decision with high sunk-costs. Given that residential properties are most vulnerable 

to intense hurricanes (e.g. ARA 2008), the decision will be highly sensitive to changes in the 

frequency of intense (above Category 3 on the Saffir Simpson scale) hurricanes affecting 

Florida and, to a lesser extent, the frequency of all named storms (Category 0 to 3) over the 

next century. For this reason, we develop scenarios for these two metrics (labeled CAT45 and 

NAMEST, respectively), which could be considered proxies for the intensity and frequency of 

storms, respectively. Given the nature of the uncertainties in long-term hurricane projections, 

these aggregated metrics are considered a more robust starting point for adaptation planning 

than a more detailed metric, such as time-dependent wind-speed frequency distributions.  
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Other tropical cyclone metrics, such as storm size and the distribution of landfalls, are 

relevant for this adaptation problem, but the level of confidence in projections for these 

metrics is currently very low (Knutson et al. 2010). For this reason, we assume that these 

metrics retain their climatological distributions. Given that it is known that these factors can 

affect losses at a local scale, it would be beneficial to test the sensitivity of any adaptation 

appraisal to the assumptions made using appropriate sets of plausible scenarios. This is 

beyond the scope of the present study.  

 

3. Methodology for Generating Basin-Level Hazard Scenarios 

In this section, hazard scenarios are generated at Atlantic basin-scale. In all cases the 

projections available in the peer-reviewed literature require some reprocessing, or in some 

cases regeneration, to develop a set of scenarios with consistent baselines, emissions 

scenarios, timescales and metrics, such that they are comparable and compatible within the 

framework. 

 

Each scenario is represented as relative to the observed 1990 (1981 – 1999) baseline. It is to 

be noted that the 1990 baseline level of hurricane activity (both intensity and frequency) is 

significantly lower than the level observed over the past fifteen years, which has been 

generally regarded as an ‘active’ period in hurricane activity (supplementary materials C2).   

 

Projections are produced for three 5-year time-slices centered around the years 2020, 2040 

and 2090. The chosen time-slices reflect the information needs for long-term adaptation 

planning (i.e. adapting residential properties) as well as requirements for shorter-term 

applications, such as insurance and disaster preparedness. Each scenario is based on the SRES 

A1B emissions scenario (Nakicenovic and Swart, 2000). We find that one emissions scenario 

is adequate in this case as the sensitivity of predictor variables (such as tropical Atlantic sea 

surface temperature, SST) to the emissions scenario uncertainty is low (supplementary 

materials B). 

 

3.1 Dynamical Model Scenarios 

Projections are taken from two recent studies, Emanuel et al. 2008 and Bender et al. 2010 

(hereafter, E2008 and B2010, respectively). These were selected as they are the first to 

provide long-term projections for the Atlantic Basin that explicitly simulate adjustments in the 

frequencies of Category 4 and 5 storms; each study applies a different dynamical downscaling 

                                                 
2 Supplementary materials are available on request to the corresponding author. 
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approach (i.e. high resolution models one-way nested into a GCM) to simulate hurricane 

activity using projections of the large-scale climate simulated by GCMs. Together the two 

studies use individual projections from nine different GCMs (with two GCMs used in both 

studies: MRI CGCM2.3.2a and MPI ECHAM5). B2010 also produces an Ensemble 

projection of the large-scale climate from eighteen GCMs from the World Climate Research 

Program Coupled Model Intercomparison Project 3 (CMIP3).  

 

The B2010 projections for 2081-2100 are linearly interpolated to provide the 5-year-average 

time-slice data for 2020, 2040 and 2090. The assumption of a linear change may lead to a 

slight overestimation of near-term changes, however this is small (for example, ≤1% in 2020 

for all but one model and <3% in all cases when compared with an interpolation using a 

constant growth rate) and there is no evidence to support any alternative assumption. The 

projections from E2008 were reprocessed to give the CAT45 and NAMEST metrics (Kerry 

Emanuel, pers. comm.) and similarly interpolated to produce the time-slice data.  

 

3.2 Statistical Model Scenarios 

Following approaches defined in the peer-reviewed literature (Vecchi and Soden 2007a, 

Vecchi et al. 2008, Saunders and Lee, 2008), the ‘Statistical Models’ are based on a linear 

regression technique that aims to capture the statistical relationship between the metrics 

(CAT45 and NAMEST) and one or more large-scale climate ‘predictors’ (on a 5-year average 

basis over the hurricane season). This relationship is then used to produce a future projection 

of hurricane activity based on GCM projections of the predictor variables. Different statistical 

models represent different (combinations of) large-scale predictors and are designed such that 

they are grounded in scientific theory on the drivers of tropical cyclone activity. 

 

In this study, the statistical relationships between the predictors and hurricane activity are 

derived from reanalysis data (ERA40, Uppala et al. 2005) and the HURDAT database. The 

approach, model parameters and regression results are outlined in the supplementary 

materials A. Four sets of predictors are used, reflecting those shown in the peer-reviewed 

literature to have a strong correlation with Atlantic hurricane activity and/or an empirical or 

theoretical causal relationship: 

1. MDR-SST: the SST in the Atlantic Main Development Region (MDR) (Saunders and 

Lee, 2008; Vecchi et al. 2008);  

2. REL-SST: the relative SST of the MDR to the tropical mean SST (Vecchi et al. 

2008); 

3. WNDSHR: the local vertical windshear in the MDR (Saunders and Lee, 2008);  



11 

4. MDR-SST + WNDSHR: a bi-variate model including both MDR SST and MDR 

windshear (Saunders and Lee, 2008).  

The correlation coefficient (r2 value) for the statistical models ranges from 0.44 to 0.69, with 

the models including MDR-SST giving the highest correlation for NAMEST (0.66 and 0.69) 

and the two models including WNDSHR giving the highest correlation for CAT45 (0.65 and 

0.68). These coefficients do not however imply a level of relative confidence of the scenario; 

while linear correlation values give an insight into whether a predictand is linearly related to a 

set of predictors, it does not necessarily itself indicate a causal relationship.  

 

A commonly-used large-scale predictor that is missing from this set is the “Maximum 

Potential Intensity” (MPI) (Emanuel 1987). MPI is not included in this study due to the fact 

that available time series of past MPI are judged to be unreliable and too short to adequately 

train a regression model (supplementary materials A). 

 

Future scenarios are derived by applying the regression models to projections of the relevant 

predictors taken from a GCM (i.e. statistical downscaling). An ensemble of projections is 

derived from the 21 GCMs of CMIP3 for each predictor, leading to 21 individual Statistical 

Model projections for each of the four Models and two metrics (supplementary materials A). 

This set of GCMs is larger than those represented by the Dynamical Model scenarios. In this 

paper, we present as scenarios only the ensemble mean and ±1 standard deviation projections 

across the set of 21 projections. 

 

The set of scenarios developed in this study (a total of 24 scenarios; 12 Dynamical Model 

scenarios and 12 Statistical Model scenarios) is much larger than is suggested to be optimal 

for scenario-based planning approaches (e.g. around 4, suggested by van der Heijden, 2005). 

In this study, we maintain the large number of scenarios so that they can also be informative 

for planning for climate experiments; that is, with the larger set, the key drivers of uncertainty 

remain clear and one can identify where uncertainties can be narrowed to greatest benefit.  

 

4. Analysis of Hazard Scenarios 

Figure 2 summarizes the temporal evolution of the hazard scenarios for the two target metrics, 

CAT45 (y-axis) and NAMEST (x-axis). Each scenario is plotted relative to the baseline level. 

The scenarios radiate out from their shared baseline value (represented by 1.0/1.0 on Figure 

2). The differences in the evolution of the scenarios against the two dimensions are quite 

stark. The majority of scenarios show either little change or a reduction in the total number of 

named storms in the Atlantic Basin. The findings are more mixed for the number of intense 

storms; nine out of the twelve Dynamical Model scenarios show an increase in the number of 
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intense storms and only one of the Statistical Models (MDR-SST). Overall, the scenario set 

appears to cover the range of projections from the broader set of studies reviewed by Knutson 

et al. 2010 (though it is difficult to make direct comparisons given the variety of metrics used 

in previous studies). 

 

 
Figure 2: Projected changes in hurricane activity rates for all scenarios plotted against the two target 

metrics, NAMEST on x-axis and CAT45 on y-axis, shown relative to the 1990 baseline level.  All 
projections start at the baseline (at 1,1) and evolve to the 2090 estimate, with the squares or triangles 

marking the 2020 and 2040 projections. The set of hazard scenarios include the Dynamical Model 
scenarios (from E2008 in shades of green and B2010 in shades of red) and the Statistical Model 

scenarios (in shades of blue). Scenarios representing the mean ± 1 standard deviation predictions from 
the statistical models are indicated by the dotted line (crosses mark the projections in 2020 and 2040); 

note that these are not visible on the Model MDR SST because they are aligned with the mean 
projection. The two black triangles show the levels during the recent ‘active period’ (1995-2010) and 
the levels during the earlier ‘inactive period’ (1972-1994). A larger version of this figure, showing the 

complete space of projections, is included in the supplementary materials D. 
 

The MDR-SST and WNDSHR/REL-SST scenarios produce almost diametrically opposite 

changes in both metrics and have similar characteristics (in terms of the direction of changes 

in CAT45 and NAMEST) to historical active and inactive periods, respectively (Figure 2). 

This difference in projections of these two sets of statistical models is not unexpected as in 

reality these drivers of tropical cyclone activity moderate one another (Vecchi and Soden, 

2007b). The Dynamical Model scenarios appear as a blending between these two extremes, 

with some scenarios taking on more MDR-SST like characteristics (e.g. GFDL-CM2.1 from 
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B2010 and GFDL, CCSM3, CNRM, MIROC and MRI from E2008) and others more towards 

WNDSHR/REL SST (e.g. UKMO-HADCM3 from B2010 and CSIRO and ECHAM from 

E2008). The combined Statistical Model scenario, WNDSHR&MDR-SST, in contrast to the 

other scenarios and historical variability, projects a rapid decline in the number of intense 

hurricanes but increase in the number of named storms (see supplementary material A for a 

discussion). 

 

Figure 3 gives the absolute values of the scenarios. In general, scenarios based on B2010 give 

larger changes in the number of intense storms than those based on E2008. Scenarios based 

on E2008 also tend to predict small increases in the frequency of all named storms, while 

those based on B2010 tend to predict small reductions, even for the same GCMs (n.b. the 

following GCMs are the same in both studies: MRI CGCM2.3.2a = MRI and MPI ECHAM5 

= ECHAM in Figure 3; however, we retain the original naming from B2010 and E2008 to 

facilitate comparison to those studies). This suggests that it is the downscaling approaches of 

the two studies that drive the differences in projections. One explanation for the differences 

could be related to the use of an upper-ocean thermal structure from a present-day 

climatology in E2008. 

 

Analysis of the scenario set suggests that natural variability could remain the dominant driver 

of risk for at least a decade, and much longer in some cases. For example, Figure 3 

demonstrates that only the most extreme Dynamical Model scenario (UKMO-HadCM3) and 

the four most extreme Statistical Model scenarios (i.e. a total of five out of 24 scenarios) 

move outside of the range of observed natural variability in the number of named storms in 

the Basin in 2020 and by 2090 just over half of all scenarios have moved outside of this 

range. For the CAT45 metric, six of the Statistical Model scenarios move outside of the range 

of natural variability by 2020 but none of the Dynamical Model scenarios. By 2090, still only 

the three most extreme Dynamical Model scenarios (UKMO-HadCM3, GFDL.CM2.1 and 

MRI-CGCM) move outside of the range of natural variability. This is consistent with the 

findings of B2010, which concluded that due to natural variability it will be impossible to 

detect a robust signal of changes in the most intense hurricanes in meteorological 

observations until the second-half of the twenty-first century (and longer for an observable 

signal in loss records, Crompton et al. 2011). This does not mean that climate change will 

have no effect on risk levels in the coming decade. Natural variability will be superimposed 

onto any anthropogenic trend of increasing or decreasing mean risk levels. It is not known 

whether this superposition will be linear and how climate change will impact natural 

variability itself. It is clear that we can not exclude the possibility of experiencing risk levels 

outside of the historical range of natural variability; for example, under the MDR_SST 
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scenario, a linear superposition would imply that active periods could become more active 

than seen before within the decade.  
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Figure 3: The hazard scenarios: projections of the average annual number of all named storms in the 

Basin (NAMEST, top) and projections of the average annual number all Category 4 and 5 storms in the 

Basin (CAT45, bottom). The blue bars are the Statistical Model scenarios for 2020 and the green and 

orange bars are the Dynamical Model scenarios for 2020 from E2008 and B2010, respectively. Three 

scenarios are shown for each Statistical Model; these are projections based on the ensemble mean of 

the 21 individual GCMs and the ±1 standard deviation. The dark shaded bars are the equivalent 

projections for 2090. The red lines show benchmark points: the solid line is the 1990 baseline level and 

the two dashed lines are the average rates over the recent active (defined as 1995-2010) and inactive 

(defined as 1972-1994) periods. Identical GCMs between E2008 and B2010 are indicated with boxes. 

 

4.1 Model adequacy and relative confidence 

Given the broad range of projections implied by the scenarios it is useful to consider whether 

one or more of these scenarios could be excluded, or given a lower degree of confidence, on 

the basis of arguments about model adequacy. There is no one metric of model adequacy 

(Knutti et al. 2010). The fact that Dynamical Model scenarios are close together relative to 
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the Statistical Models can not be interpreted as a measure of confidence, as in many cases the 

models on which that Dynamical Model scenarios are based will share similar assumptions 

(Knutti et al. 2010).  

 

Each of the models drawn upon in this study has been shown to represent present-day 

variability in tropical cyclone activity in the Atlantic Basin, to varying degrees (E2008; 

B2010; Vecchi et al. 2008, Saunders and Lee, 2008).  While the ability of a model to 

represent the past is also not a guarantee of a model’s ability to represent the future; it is a 

useful starting point. Given that future trends due to climate change will be mainly driven by 

changes in the large-scale climate environment, another useful metric might be the ability of 

the GCM to adequately represent the present-day relationships between the large-scale 

climate drivers. Figure 4 shows the predicted MDR windshear and SST anomalies from each 

of the GCMs of the CMIP3 ensemble, averaged over the 2040 and 2090 5-year time slices. 

All models predict an increase in MDR SSTs (to varying degrees), but there is little consensus 

in either the scale or direction of changes in MDR windshear (supplementary materials A, 

Figure S.1). The GCMs used in the B2010 and E2008 studies are highlighted. Comparing 

predictions from these models to those in Figure 3, some relationships emerge (the model set 

is too small to draw strong conclusions). We suggest that differences in predictions of future 

windshear are an important cause of the diversity in tropical cyclone projections shown in 

Figure 3. Those GCMs that predict the largest increases in windshear alongside increases in 

MDR SSTs (CSIRO MK3.0 and UKMO-HadCM3) tend to lead to predictions of a decreasing 

number of named storms and category 4-5 storms. Those models that predict either little 

change in windshear or a large decrease (such as GFDL-CM2.0) tend to predict increases in 

the number of category 4-5 storms and little change (or in one case a large increase) in the 

total number of named storms (where the sign of the change depends on the downscaling 

approach). 
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Figure 4: The relationship between 5-year average windshear and sea surface temperature (SST) in the 
Atlantic main development region (MDR) for CMIP3 ensemble, for 2040 (orange) and 2090 (red). The 

GCMs used in B2010 and E2008 are highlighted as indicated in the legend; all other models are 
indicated by a cross. 

 

Given the apparent importance of long-term projections of windshear, an important indicator 

of model adequacy could be the ability of models to represent the relationship between 

windshear and MDR-SST in the past. In agreement with previous studies (e.g. Gillet et al. 

2008), we find that the relationship between these variables is far weaker in all of the GCMs 

than is suggested by the ERA-40 reanalysis data (supplementary materials E). The absolute 

values of these two variables over the baseline period are also inconsistent with the reanalyzes 

of past data and demonstrate substantial model biases. No group of GCMs appears to perform 

particularly well or poorly in these respects. This difference from the observations might lead 

one to question the adequacy of these models for prediction. 

 

It should be noted that there is uncertainty in the appropriate baseline value from which 

anomalies are calculated that could imply a systematic bias in each of the scenarios. Some 

authors (e.g. Elsner 2006; Gillet et al. 2008; Holland and Webster, 2007; Mann and Emanuel, 

2006; Trenberth and Shea 2006; Santer et al. 2006; Smith et al. 2010) suggest that climate 

change has already impacted hurricane activity. If this were the case, it could mean that the 

1981-1999 period was actually an inactive period, rather than a neutral period; a simple 

thought experiment (i.e. making the simplistic assumption that climate change were 

represented by the simple linear trend on observed tropical cyclone data since 1950, 

supplementary materials C) suggests negative biases on the absolute values of the scenarios 

of up to around 1.5 for all named storms (+15% of the 1990 baseline) and 0.3 for category 4-5 

storms (+21% of the 1990 baseline) in the 5-year average time slices. This uncertainty leads 
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to an additional uncertainty in estimates of the expected losses derived from the hazard 

scenarios. Better understanding the role of natural cycles in past Atlantic tropical cyclone 

activity (and therefore, the role of climate change) would help to resolve this uncertainty in 

the baseline, lead to improved estimates of current and future risk, and could allow the 

exclusion of some of the scenarios if they were found to be inconsistent with observed trends. 

 

5.  Risk Scenarios for Wind-Related Property Damage in Florida 

A simplified risk model is applied to estimate the implications of the scenario set for wind-

related residential property losses in Florida. The risk metrics derived in this paper are the 

average annual loss (AAL), the standard deviation of loss and the exceedence probability 

curve (Grossi and Kunreuther, 2005). The core risk model is based on proprietary probability-

loss data provided by Risk Management Solutions Inc. and represents the long-term average 

(defined as 1950 – 2005) level of risk for a large portfolio of current residential properties in 

Florida. The model is a simplification of a full catastrophe model: losses are aggregated to 

state level; and secondary uncertainties from, for example, the uncertain vulnerability of 

properties, are not captured. The climate change scenarios are each applied deterministically 

by adjusting the frequencies of individual events within the risk model based on the two 

metrics. Exposure and vulnerability is held constant over time. The detailed methodologies 

are described in supplementary materials F. 

 

Figure 5 shows the estimated AAL relative to the baseline (1981-1990) level for each of the 

climate change scenarios in 2020 and 2090, where the baseline AAL for this portfolio is 

estimated to be around $3.6 billion USD. In all but one of the Dynamical Model scenarios the 

AAL remains roughly constant (to within 3 per cent) or increases up to twenty percent in 

2020.  By 2090, the divergence increases, with the most significant increases predicted by the 

scenarios based on GFDL-CM2.1, GFDL and MRI-CGCM. The only Dynamical Model 

scenario with a significant decrease in AAL in both 2020 and 2090 is the scenario based on 

UKMO-HADCM3, which suggests more than a halving of AAL by 2090. The most 

significant increases in AAL are suggested by the two sets of Statistical Model scenarios that 

incorporate MDR-SST; the pure MDR-SST scenario suggests more than a four-fold increase 

in AAL by 2090. The WNDSHR and REL-SST models suggest a reduction in AAL similar in 

magnitude to UKMO-HADCM3. As discussed in Section 4, these predictions of negative 

changes appear to be contingent on experiencing significant increases in windshear in the 

tropical Atlantic due to climate change.  

 

Comparing Figure 5 with Figure 2 leads to the conclusion that changes in the intensity and 

frequency of tropical cyclones are both important determinants of future AAL. For example, 
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for the Statistical Model scenarios based on the WNDSHR&MDR-SST model, strong 

increases in the number of named storms appears to offset the strong reduction in the number 

of Category 4 and 5 storms, leading to an increase in AAL in most cases, whereas for the 

Dynamical Model scenarios based on B2010, strong increases in the Category 4 and 5 storms 

(if large enough) can offset a moderate reduction in the number of named storms to give an 

increase in risk.  
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Figure 5: The projected AAL, expressed as a ratio relative to the 1990 baseline, for each of the 

scenarios in 2020 (colored bars) and 2090 (black bars). The blue bars for 2020 are the Statistical 

Model scenarios and the green and orange bars are the Dynamical Model scenarios from E2008 and 

B2010, respectively. 

 

Increases in average risk tend to be accompanied by increases in the volatility of risk (and 

vice versa), as represented by the standard deviation of loss for each scenario (supplementary 

materials F).  Figure 6 gives exceedance probability curves for each scenario in 2020. This 

suggests that even in 2020 there could be significant changes in the probabilities of multi-

billion USD losses, even though changes in the AAL are more moderate.  Such a large loss 

would be caused by a Category 4 or 5 hurricane striking a densely populated area, but because 

the probability of such an event is low it has a relatively small effect on the AAL. A 

narrowing of uncertainties in projections of the intensity of tropical cyclones would be 

valuable for disaster preparedness and insurance systems in Florida, which need to prepare for 

such events.  
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Figure 6: The estimated exceedence probability curves for each scenario in 2020. The thick black line 

represents the long-term average level. For simplicity, only the Dynamical Model scenarios and 

ensemble mean Statistical Model scenarios are shown. 

 

6. Discussion 

The analysis presented in Section 4 suggests that it is not possible to draw conclusions about 

the relative confidence of the Dynamical and Statistical Model scenarios as both are 

conditioned on the same set of GCM projections and there is no evidence that one group of 

GCMs or downscaling approaches is more adequate than the other. This leads us to the 

conclusion that the nature of the uncertainty in long-term risks from Atlantic tropical cyclones 

could be regarded as deep uncertainty (Lempert et al. 2003), or ambiguity, where there is 

incomplete or conflicting information about the probability of different states (Gilboa 2009). 

Several past studies have argued that given the nature of the uncertainties in climate change, 

long-term adaptation problems will often be a case of decision making under deep uncertainty 

(Dessai et al. 2009; Lempert et al. 2003; Groves et al. 2008a; Morgan et al. 1999; Oreskes et 

al. 2010; Stainforth et al. 2007a,b). 

 

There is a deep literature on the implications of ambiguity for decision making that is directly 

relevant to the interpretation of climate projections for adaptation and the design of scenarios 

to support decision making. Millner et al. 2010 summarizes the literature and applies the key 

arguments for the case of assessing responses to climate change. A central conclusion 

described by Millner et al. is the traditional approach for decision making under uncertainty, 

expected value analysis (or in its more generalized form, subjective expected utility (SEU) 

theory, Savage 1954) is not appropriate to apply under conditions of ambiguity. SEU theory 

takes as an input a unique subjective probability distribution (SPD) over all possible future 

states. For a case where there are multiple scenarios of future states and no probability 
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information, SEU theory allows one to elicit expert beliefs about the likelihood of different 

scenarios to generate a unique SPD. Several authors have argued that in a case like this, where 

there is ambiguity over the likelihood of different scenarios (i.e. a secondary uncertainty in 

the SPD), it is not rational to ignore ambiguity and assign a single probability estimate for 

each future scenario (Gilboa et al. 2009, Lempert et al. 2003 and Morgan 2003). Further, 

Ellsberg (1961) and Slovic and Tversky (1974) demonstrate that in cases where there is 

ambiguity, SEU theory is not a good model of actual behavior as decision makers tend to put 

more weight on options that have a lower degree of ambiguity (i.e. they are ambiguity 

averse). The outcome of this debate has been a series of alterative decision making 

approaches, such as robust decision making (Lempert et al. 2003; van der Heijden, 2005), that 

do not rely on a unique SPD and take account of the ambiguity over future scenarios. The key 

input to these methods is an understanding of the range of plausible future scenarios. These 

types of approaches tend to emphasize ‘no-regrets’ options and flexible adaptation strategies, 

which perform well under a wide range of possible future scenarios and have been applied to 

adaptation planning (Lowe et al. 2009, Groves et al. 2008a and Dessai and Hulme, 2007). 

 

From this series of arguments, we argue firstly that to best inform decision making, a priority 

for climate scientists and modelers is to: (i) clarify the range of possible future states of 

hurricane activity (as a function of time), the key drivers and nature of the potential impacts, 

and (ii) narrow the range of plausible future states where possible by reducing sources of 

uncertainty. Secondly, efforts to quantify unique SPDs of long-term hurricane activity based 

on models available today, will be of little value to decision makers (or potentially negative 

value is misused, Hall 2007) given the substantial residual (i.e. unquantifiable, secondary) 

uncertainties in current projections and the fact that methods are available to inform decisions 

without unique SPDs. 

 

This research has suggested a number of lessons for the design of future climate modeling 

experiments and climate analyses to meet these needs; firstly, the importance of better 

understanding the role of natural cycles (and therefore, climate change) in driving variability 

in tropical cyclone activity and the climate of the Atlantic. We have shown how a better 

understanding of the role of natural cycles and climate change in past and present tropical 

cyclone activity is important for clarifying current and future risk levels and may allow us to 

eliminate some future scenarios. Linked with this, the analyses also points toward the 

importance of observations and of careful study of observational records in order to pinpoint 

early signals of changes in tropical cyclone characteristics.   

 

For future climate modeling, we draw three conclusions: 
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Firstly, there is a need for more study of the adequacy of models. There are many 

fundamental questions that need to be addressed: for example, does the fact that current 

GCMs are unable to fully represent historical co-variations of MDR SSTs and windshear 

shown in Section 4 suggest an inadequacy for forecasting future conditions for tropical 

cyclone formation and evolution? Is it sufficient for a model to represent current tropical 

cyclone climatology and multi-annual variability, even if there are suggestions that they are 

right for the wrong reasons? From such questions, one might be able to define a set of 

necessary, not sufficient, tests for model adequacy for a given application. Such analyses may 

in time enable one to exclude certain scenarios or estimate relative confidence and therefore, 

refine adaptation decisions.  

 

Secondly, we have demonstrated that scientific analyses and improved modeling to give 

greater certainty about the sign of future changes in tropospheric large-scale vertical 

windshear over the Atlantic would narrow the range of uncertainty in future (wind-driven) 

hurricane risk for Florida; our results suggest that the sign of future wind shear changes 

appears to be a key determinant of the sign of future changes in risk. But clarifying the sign of 

future wind shear changes is not an easy task, as future windshear is dependent on many other 

large-scale changes, such as the latitudinal temperature gradients of the atmosphere, and 

changes to natural cycles like ENSO. 

 

Thirdly, the need to explore the full range of uncertainty in future states. In the main, climate 

modelers have attempted to generate projections that represent a ‘best guess’ conditioned on a 

particular model structure. Recently, some studies have set out to more fully explore the range 

of uncertainties in future climate projections, for example: Murphy et al. 2009 sets out to 

generate scenarios (with probability estimates) of the UK climate to 2090 using a ‘perturbed 

physics ensemble’, which explores parameter uncertainty in the HadSM3 GCM; and Groves 

et al. 2008b and Dessai and Hulme, 2007 each use multiple models (GCMs and/or  

downscaling approaches with differing assumptions) to produce sets of scenarios of extreme 

rainfall over California and water supplies in the East of England, respectively. We argue that 

while these studies represent a significant step forward in exploring uncertainty, they still do 

not explore the full range of uncertainties because they are conditioned on one (or a handful 

of non-independent, Knutti et al. 2010) GCMs. This means that uncertainties associated with 

model structure are not explored. We suggest that to inform adaptation, climate experiments 

include analyses that leave the confines of current GCM structures and attempt to explore the 

range of possible outcomes, for example, using simple models or considering theoretical 

limits. 
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There are some limitations of the current scenario set that require further study. Firstly, this 

study has only explored scenarios of the frequency and intensity of tropical cyclones in the 

Atlantic Basin. There are additional uncertainties in other characteristics of tropical cyclones 

(for example, their landfall frequencies and locations) that could be important to take account 

of if it were shown that the choices between adaptation options were also dependent on these 

assumptions. Secondly, this study has only explored wind-driven risks from tropical cyclones. 

In reality, adaptation planners will also need to consider other risks associated with tropical 

cyclones, such as storm surge risks and rainfall-driven damage.  

 

7. Summary 

This paper has put forward a set of scenarios of long-term tropical cyclone frequency and 

intensity for the Atlantic Basin with the aim of informing adaptation planning. These are used 

to generate risk scenarios using a coupled catastrophe-climate modeling approach. The 

scenarios suggest that wind-related hurricane losses in Florida could half or increase more 

than a four-fold by the end of the century due to climate change alone. We conclude that 

natural variability is likely to be the dominant driver of the level and volatility of wind-related 

risk over the coming decade; however, the superposition of climate change and natural 

variability means that under some scenarios we can not exclude the possibility of 

experiencing new extremes in risk within the decade.  We also present a series of analyses to 

better understand the relative adequacy of the different models that underpin the scenarios and 

conclude that it is impossible based on current science to quantify their relative likelihood. 

This leads to the conclusion that planning adaptation to long-term tropical cyclone risk in the 

Atlantic will likely be a case of decision making under deep uncertainty. Finally, we draw 

specific conclusions for the needs from the science and modelling going forwards to better 

inform adaptation, including: a better understanding of the drivers of current variability and 

the role of climate change today; improved monitoring to detect early signals of change; 

analyses to deliver greater certainty future windshear in the Atlantic Basin; and a greater 

focus on exploring the full range of uncertainties in long-term projections, moving outside of 

the confines of current GCM structures. 
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