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Out	 there	 in	 the	 cloud,	 there	 is	 more	 computing	 power	 and	 there	 are	 more	
databases,	more	 images,	more	models	 and	more	model	output,	 than	have	ever	
existed	 before.	 	 	 There	 are	 also	 a	 variety	 of	 projects	 in	 different	 countries	 to	
provide	ways	of	making	all	 that	 information	more	readily	available	at	different	
scales	 and	 to	 different	 types	 of	 users,	 such	 as	 the	 NERC	 funded	 pilot	 Virtual	
Observatory	 project	 in	 the	 UK,	 the	 Earth	 Cube	 initiative	 of	 the	 US	 National	
Science	 Foundation,	 and	 the	 Global	 Earth	 Observation	 System	 of	 Systems	
(GEOSS).	There	are	also	calls	 for	hyper‐resolution	earth	system	science	models	
at	 the	 global	 scale,	 analogous	 to	 virtual	 observatories,	 as	 a	 way	 ahead	 in	
predicting	global	change	(Wood	et	al.,	2011).	
	
It	 therefore	 seems	 worthwhile	 to	 reflect	 on	 the	 nature	 of	 all	 that	 activity	 in	
producing	 a	 virtual	 observatory	 as	 a	 representation	 of	 our	 understanding	 and	
observations	of	 the	 real	world.	 	 In	 effect,	 although	 a	 virtual	 observatory	might	
serve	 simply	 to	 facilitate	 access	 to	 existing	 observations,	 there	 will	 also	 be	 a	
strong	 driver	 to	 blend	 those	 observations	 with	 simulation	models.	 	 	 A	 virtual	
observatory	will	 then	 also	 serve	 to	manufacture	 virtual	 observations	based	on	
model	simulations,	either	at	places	where	observations	have	not	yet	been	made,	
or	 at	 times	 in	 the	 past	 or	 future	where	making	 additional	 observations	 is	 not	
actually	 possible,	 and,	 of	 course,	 at	 places	 where	 the	 actual	 observations	 are	
judged	noisy,	unreliable,	or	incoherent.	
	
In	 fact	 the	 distinction	 between	 real	 and	 virtual	 observations	 is	 already	 rather	
more	blurred	than	it	should	be.	 	 	 In	hydrology	it	 is	not	commonly	the	case	that	
stream	 discharge	 is	 a	 real	 observation.	 	 Much	 more	 often	 it	 is	 derived	 from	
measurements	of	water	level	through	a	rating	curve.		The	rating	curve	is	itself	a	
model	that	can	be	used	to	interpolate	and	extrapolate	to	high	and	low	discharges	
beyond	 the	 range	 of	 the	 available	 measurements	 of	 discharge,	 with	 the	
possibility	 of	 making	 false	 extrapolations.	 	 The	 form	 and	 parameters	 of	 that	
model	 may	 be	 more	 or	 less	 robust	 and	 stationary	 depending	 on	 the	
characteristics	of	the	site	(e.g.	Herschy,	2009;	Westerberg	et	al.,	2011).	 	Similar	
considerations	 apply	 to	 many	 of	 the	 variables	 used	 by	 hydrologists,	 including	
catchment	 inputs	 interpolated	 from	 point	 raingauges;	 or	 estimates	 of	 rainfall	
inferred	 from	 radar	 reflectivity,	 and	 variables	 derived	 from	 remote	 sensing	
digital	 numbers	 through	 some	 interpretative	 model	 (that	 will	 have	 its	 own	
uncertain	 parameters).	 	 Thus,	 many	 variables	 are	 already	 treated	 as	
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observations	 even	 if	 they	 are	model‐derived	or	uncertain	 estimates	 of	 the	 real	
variables.								
	
This	should	surely	be	considered	bad	practice.			Model‐derived	variables	are	not	
observations.	 	 	 	 They	 are	 virtual	 observations	 that	 should	 be	 clearly	
distinguished	 from	what	 is	 actually	 observed.	 	 	 It	 is	 then	 only	 a	 small	 step	 to	
simulations	 of	 variables	 that	 are	 not	 directly	 observable	 (or	 have	 not	 been	
observed)	 using	 simulation	 models.	 	 There	 will	 then	 be	 the	 possibility	 of	
confusing	 virtual	 variables	 and	 direct	 observations.	 	 	 The	 ability	 for	 a	 user	 to	
distinguish	one	from	the	other	will	fade	away	as	ways	of	visualising	the	outputs	
from	 the	virtual	observatory	become	more	and	more	 sophisticated.	 	 	 In	 fact,	 it	
will	 generally	 be	much	 easier	 to	 visualise	 virtual	 variables	 in	 3D	 and	 4D	 than	
observation	 derived	 variables,	 because	 the	 observations	 are	 limited	 in	 both	
space	and	time	(or	are	not	necessarily	the	hydrological	relevant	variables),	while	
the	 virtual	 observations	 can	 appear	 to	 be	 complete	 in	 space	 and	 time.	 	 But,	 a	
better	visualisation	does	not	necessarily	mean	better	information	content	when	
it	comes	to	making	decisions	(see	Beven	and	Cloke,	2011);	a	prettier	picture	may	
not	provide	deeper	 insight	and	might	actually	be	misleading,	particularly	when	
uncertainties	are	high.				
	
So	how	do	we	try	to	ensure	that	virtual	observatories	help	to	improve	decision	
making	 rather	 than	 providing	 misleading	 virtual	 information?	When	 does	 the	
unavoidable	 error	 in	 the	 virtual	 information	 become	 misinformation	 or	
disinformation?	 	 Clearly	 some	model‐derived	 or	 simulated	 variables	 might	 be	
expected	to	be	more	robustly	estimated	than	others,	but	it	is	quite	possible	that	
virtual	information	could	be	misleading	because	of	all	the	uncertainties	that	arise	
in	 the	 modelling	 process	 (see	 Beven,	 2006,	 2009),	 including	 uncertainties,	
incommensurabilities	 and	 inconsistencies	 in	 the	 available	 observations	
themselves	(e.g.	Beven	and	Westerberg,	2011).	 	 In	as	much	as	the	observations	
are	also	imprecise,	observational	error	will	mix	with	epistemic	representational	
error,	 and	 the	 resulting	 product	 will	 infect	 the	 entirety	 of	 the	 virtual	
observational	 space.	 	 Unlike	 those	 forms	 of	 observational	 error	 that	 can	 be	
considered	 as	 aleatory,	 there	 are	 no	 techniques	 corresponding	 to	 confidence	
intervals/error	 bars	 once	 the	 error	 goes	 viral	 in	 this	 way.	 	 Deep	 questions	
regarding	 “simple”	 operations,	 like	 subtracting	 a	 virtual	 observation	 from	 an	
actual	 observation,	 led	 Lorenz	 to	 coin	 the	 word	 “subtractable”	 (Lorenz	 1985,	
Smith	2006)	 in	 the	context	of	evaluating	 forecasts.	Worse,	 in	combining	virtual		
and	observed	variables,	the	observational	errors	and	gaps	can	be	easily	obscured	
if	not	made	truly	invisible.	This	should	also	be	considered	to	be	bad	practice.	
	
A	 virtual	 observatory	 can	 be	 (at	 best)	 an	 approximate	 description	 of	 the	 real	
system	under	study.	 	 	So	the	question	is	for	which	purposes	can	we	expect	this	
approximation	 to	 be	 adequate	 and	 for	 which	 will	 it	 be	 significantly	
misinformative.	There	are	very	many	different	types	of	purpose	for	which	such	a	
system	might	 be	 useful	 in	 catchment	management	 decisions.	 	 	 That,	 naturally,	
leads	 to	 a	 further	 question	 of	 how	 to	 define	 whether	 a	 model	 should	 be	
considered	“adequate”	in	making	predictions	about	the	future	that	might	be	used	
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to	 inform	 such	 decisions,	 especially	 when	 there	 is,	 necessarily,	 epistemic	
uncertainty	 about	 the	 boundary	 conditions	 (and	 also	 the	 process	
representations)	 for	 such	 predictions	 into	 the	 future	 (see	 Parker	 2010).	 	 Of	
course,	what	proves	adequate	for	one	decision	maker	will	not	prove	adequate	for	
another,	 leading	 to	 a	 variety	 of	 competing	 virtual	 worlds	 without	 a	 clear	
indication	of	which	might	be	the	most	useful	for	a	given	purpose.	
	
This	is	not	a	question	that	has	been	widely	discussed	in	the	literature.			There	are	
many	 studies	 that	 have	 simply	 taken	 available	 models,	 generally	 with	 some	
calibration	against	past	data,	and	used	them	for	predicting	the	impacts	of	future	
change.		But	the	best	available	model	(or	models)	might	not	necessarily	be	fit	for	
purpose	 for	 such	 applications	 (e.g.	 Smith,	 2000,	 2002;	 Beven,	 2010,	 2011).		
Again,	 some	 test	 of	 adequacy	 is	 required,	 at	 least	 in	 representing	 the	past	 and	
present	 even	 if	 we	 cannot	 fully	 test	 adequacy	 in	 evaluating	 the	 impacts	 of	
change.	 	 The	 virtual	 observatory	 will	 need	 to	 convey	 that	 assessment	 of	
adequacy	to	the	users	and	decision	makers	in	some	way.			There	is	no	tradition	of	
doing	so	for	hydrological	variables,	even	for	the	estimation	of	discharges	(though	
this	is	starting	to	change).	
	
The	question	of	how	to	calibrate	or	condition	a	model	or	models	based	on	past	
data,	and	how	to	represent	their	uncertainties,	has	been	extensively	discussed	in	
the	 literature.	 	 	 It	might	 seem	surprising,	 therefore,	 that	 there	 is	 not	 already	a	
consensus	about	defining	an	adequate	model	or	(ensemble	of	models)	but	only	a	
competing	range	of	methodologies	(BATEA,	DREAM,	GLUE	and	others).		This	is	in	
part	 due	 to	 a	 lack	 of	 agreement	 about	 how	 to	 handle	 the	 wide	 range	 of	
uncertainties	 in	 the	 modelling	 process	 (e.g.	 Beven,	 2006,	 2010).	 	 Statistical	
methods,	including	Bayesian	methodologies,	are	limited	to	fitness	within	a	model	
class,	which,	assumed	 to	be	valid,	 then	equates	 “maximum	 likelihood”	with	 “fit	
for	purpose”.			Challenges	arise	when	descriptive	models	which	are	valuable	for	
understanding	 the	 relative	 importance	 of	 various	 processes	 but	 which	 were	
never	 intended	 to	 be	 taken	 seriously	 in	 terms	 of	 their	 quantitative	 outputs	
because	of	known	unknowns,	are	cast	as	providing	relevant	quantitative	outputs	
that	 are	merely	uncertain.	What	part	 should	 such	descriptive	models	play	 in	 a	
virtual	observatory?		
	
The	 tradition	 in	 hydrology	 is	 also	 to	 think	 in	 terms	 of	 the	 identification	 of	
parameters	 rather	 than	 testing	 models	 as	 adequate	 hypotheses	 of	 how	 a	
catchment	functions	given	a	set	of	data	and	many	sources	of	uncertainty.		What	
is	needed	 in	defining	whether	a	model	 is	 adequate	 is	 some	 form	of	hypothesis	
testing	 that	 allows	 for	 the	 fact	 that	 many	 of	 the	 sources	 of	 uncertainty	 are	
epistemic	rather	than	aleatory	in	nature	(e.g.	Smith,	2006;	Beven,	2010;	Buytaert	
and	Beven,	2011)	while	avoiding	Hume’s	pitfall	of	induction	(Howson,	2003).		In	
particular	 virtual	 observatories	 aim	 to	 represent	 everywhere,	 but	 the	
observations	 that	 might	 normally	 be	 used	 to	 assess	 models	 are	 not	 available	
everywhere	 (Beven,	 2007).	 	 Thus	 epistemic	 uncertainties	 are	 generic	 to	 the	
virtual	observatory.		The	best	that	can	be	hoped	is	that	a	model	can	be	shown	to	
shadow	 the	 available	 observations	 within	 the	 limits	 of	 observational	 error	
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(including	the	observations	used	to	create	the	inputs	to	a	model)	(Smith,		2006;	
Beven,	2006,	2010).	
	
And	that	is	exactly	why	defining	whether	a	model	is	adequate	or	fit	for	purpose	
is	 so	 difficult.	 	Models	 are	 approximations,	 and	 cannot	 be	 expected	 to	 shadow	
forever,	 but	 the	 timescales	 on	 which	 a	 model	 does	 shadow	 indicates	 the	
timescales	 on	 which	 is	 it	 conceivable	 to	 argue	 that	 we	 are	 dealing	 with	
measurement	uncertainties	in	the	 inputs.	On	longer	time	scales	the	issue	 is	not	
uncertainty	but	 indeterminacy	and	 the	methodologies	 for	hypothesis	 testing	 in	
the	 face	 of	 these	 epistemic	 issues	 are	 not	well	 developed.	 	 	 So	 there	 are	 some	
really	 important	questions	 to	be	resolved	 in	setting	up	virtual	observatories	as	
modelled	 realities.	 	 Hypothesis	 testing	 might	 then	 need	 to	 rely	 on	 more	
qualitative	 input	 of	 information	 into	 the	 virtual	 observatory	 (photographs,	
observations	by	local	residents,	….)	or	on	defining	critical	experiments	designed	
for	 hypothesis	 testing.	 	 	 A	 framework	 for	 hypothesis	 testing	 needs	 to	 evolve	
within	 such	 virtual	 observatories	 that	 goes	 beyond	 simply	 using	 the	 best	
available	 models,	 especially	 where	 these	 do	 not	 shadow	 the	 observations	 to	
within	 limits	 of	 observational	 error	 (as	 is	 the	 case	 for	 many	 environmental	
models).	 	 	Models	 that	 fail	 such	 tests	might	not	provide	 adequate	 evidence	 for	
decision	making,	even	if	they	are	the	only	predictions	available.		
	
This,	however,	is	not	(only)	a	problem;	it	is	an	opportunity;	an	opportunity	either	
to	 improve	our	methodology	 for	using	models	 (and	 the	models	 themselves)	 to	
overcome	 those	 deficiencies,	 or,	 if	 that	 is	 not	 possible	 within	 the	 time	 scale	
required	for	a	decision,	to	come	to	a	better	decision	in	some	other	way.				Such	an	
approach	 is	 entirely	 consistent	 with	 a	 scientific	 methodology	 based	 on	
hypothesis	testing	and	is	more	likely	to	avoid	false	confidence.					
	
But	what	 form	of	hypothesis	 testing	 is	possible	when	we	 fully	understand	 that	
there	are	epistemic	uncertainties	 in	 the	modelling	process?	 	 If,	 in	 the	words	of	
George	 Box,	 all	 models	 are	 wrong	 but	 some	 are	 useful,	 how	 is	 it	 possible	 to	
distinguish	between	the	patently	wrong	and	the	useful	approximation	when,	 in	
general	we	might	expect	 to	 see	a	wide	spectrum	of	performance,	 regardless	of	
performance	measure,	 and	 when	 any	 information	 available	 to	 evaluate	model	
performance	might	also	be	subject	to	both	epistemic	and	random	errors?				
	
Statistical	methods	for	hypothesis	testing	are	well	developed,	but	what	they	offer	
is	weak:	 “rejection”	or	 “failure	 to	 reject”	 conditional	 on	assuming	 that	 a	model	
structure	 is	 correct	 and	 that	 data	 are	 subject	 only	 to	 random	 errors.	 	 This	 is	
effectively	an	assumption	that	epistemic	uncertainties	are	negligible	(or	can	be	
represented	as	if	they	were	random	in	nature).		It	is	difficult	to	see	how	such	an	
assumption	is	tenable	in	modelling	catchment	processes.	
	
But	 what	 is	 the	 alternative?	 	 We	 cannot	 represent	 epistemic	 errors	 explicitly	
because	if	we	knew	how	to	represent	them,	they	would	no	longer	be	epistemic.			
It	 is	 perhaps	 therefore	 necessary	 to	 focus	 on	 the	 expression	 of	 being	 fit	 for	
purpose	with	respect	to	past	performance.			What	should	be	our	expectations	of	a	
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model	that	would	be	considered	fit	for	purpose?			We	would	wish	it	to	have	the	
functionality	to	not	only	be	consistent	with	past	observations,	but	also	to	predict	
future	conditions	(even	though	we	cannot	test	the	latter	until	the	future	evolves).			
We	would	not	expect	it	to	fit	every	past	observation	precisely;	 it	 is,	after	all,	an	
approximation	and	the	input	data	and	evaluation	observations	are	also	subject	to	
epistemic	 uncertainties.	 	 	 Consistency	 does	 imply,	 however,	 adequate	
performance	 after	 allowing	 for	 potential	 errors	 in	 the	 available	 data.	 	 So	 how	
close	to	an	observation	does	a	prediction	need	to	be	for	a	model	to	be	accepted	
as	fit	for	purpose?			Can	the	limits	of	acceptability	be	defined	given	only	the	past	
performance	given	the	available	observations	and	a	knowledge	of	the	time	and	
space	scales	required	for	a	particular	purpose	(Smith,	2000,	2006;	Beven,	2010)?		
How	far	should	failure	on	a	single	measure	of	acceptability	lead	to	rejection	of	an	
otherwise	acceptable	model?		That	might	be	a	rogue	observation,	or	it	might	be	a	
critical	observation	that	would	lead	to	re‐evaluation	of	the	model	concepts.				
	
There	is	then	the	possibility	of	multiple	representations	satisfying	some	limits	of	
acceptability.	 	 There	 is	 also	 a	 possibility	 that	 none	 of	 the	 representations	will	
prove	acceptable	(e.g.	Beven,	2006).		Virtual	observatory	visualisations	will	need	
to	convey	such	ambiguity	and	imprecision	in	a	way	that	users	can	understand	so	
that	they	are	empowered	to	make	informed	decisions	given	the	limited	realism	
of	 what	 they	 see	 before	 them.	 .	 	 This	 will	 be	 a	 challenge,	 as	 it	 is	 already	 a	
challenge	 in	 presenting	 the	 results	 of	 the	 ensemble	 of	 available	 global	 climate	
models,	 when	 all	 the	 available	 models	 are	 subject	 to	 significant	 epistemic	
uncertainties	(and	often	have	systematic	errors	larger	than	the	expected	signal)	
(Smith	and	Stern,	2011;	Beven,	2011).			The	growth	of	scientific	computing	in	the	
second	half	 of	 the	 20th	 century	 admitted	many	 instances	 of	 over‐confidence	 in	
the	 quantification	 of	 environmental	 systems	 which	 led	 to	 false	 precision	 and	
(undoubtedly)	 some	 poor	 decision	making.	 	 	 The	 challenge	 is	 to	 avoid	 similar	
claims	of	over‐realism	in	the	virtual	observatories	of	this	century.			
	
It	 is	 still	 the	 case	 that	 very	 few	 studies	 in	 catchment	 science	 have	 posed	 the	
question	 of	 model	 evaluation	 in	 this	 way.	 	 And	 yet	 it	 seems	 to	 be	 critical	 as	
modelling	 moves	 towards	 virtual	 observatory	 platforms	 and	 models	 of	
everywhere.	 	 There	 is	 some	 evidence	 that	 it	 might	 be	 important	 to	 involve	
stakeholders	 with	 local	 knowledge	 into	 this	 type	 of	 framework;	 they	 will	
sometimes	be	able	to	identify	model	inadequacies	(e.g.	Beven,	2007;	Lane	et	al.,	
2011).			But	this	really	is	also	a	collection	of	science	problems:	of	how	to	define	
assumptions	 about	 input	 errors	 in	 setting	 limits	 of	 acceptability	 for	 different	
applications;	of		how	to	evaluate	all	the	available	models	that	might	be	consistent	
with	those	limits	of	acceptability	even	given	cloud	computing	resources;	of	how	
to	 define	 observational	 programs	 for	 testing	 those	models	 as	 hypotheses	 as	 a	
way	of	constraining	the	uncertainty	in	the	simulated	outcomes;	of	how	to	use	the	
outcomes	within	 a	 decision	making	 framework.	 	 	 Considering	 these	 questions	
might	 actually	 provide	 a	 way	 of	 doing	 hydrological	 science	 within	 virtual	
observatory	representations	of	hydrological	realities.	
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