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1. Introduction6

The following material is a supplement to ‘An evaluation of decadal probability forecasts7

from state-of-the-art climate models’, in which the perfomance of simulation models from8

Stream 2 of the ENSEMBLES decadal hindcasts (Doblas-Reyes et al. 2010) are contrasted9

with the empirical dynamic climatology (DC) model over global and Giorgi region scales.10

Further details about transforming ensemble simulations into probabilistic distributions are11

presented below in Section 2. In Section 3 it is shown that the DC empirical model outper-12

forms the ENSEMBLES simulation models by several bits at most lead times and for every13

region studied. In Section 4 the robustness of the results in the main manuscript are evalu-14

ated by using alternative proper scoring rules, namely the proper linear (PL) and continuous15
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ranked probability scores (CRPS). It is shown that the results are robust to the scoring rule16

chosen. Finally, in Section 5 the performance of alternative empirical models are considered,17

namely a ‘Prelaunch linear trend’ approach and ‘Prelaunch DC model’. It is shown that the18

Prelaunch DC model performs to a similar quality as the standard DC approach employed19

in the main manuscript, and is robust to the kernel parameters and anchor year chosen20

to fit the model. Further details about generating the probabilistic DC forecasts and the21

robustness of the results to the model parameter choices are also provided in Section 5.22

2. Probabilistic forecast distributions for the ENSEM-23

BLES simulation models24

Figures 1, 2 and 3 illustrate the probabilistic forecast distributions for the ENSEMBLES25

simulation models, generated by kernel dressing the ensemble members as described in the26

main manuscript and below under cross-validation (the forecast distributions for HadGem227

are illustrated in figure 3 in the main manuscript).28

Information contamination is a significant concern in the evaluation of decadal forecasts.29

Given that the total duration of hindcast experiments is typically fifty years, there are30

very few independent decadal periods in the forecast-outcome archive. Cross-validation ap-31

proaches attempt to maximise the size of the forecast-outcome archive (to increase statistical32

significance) while avoiding the use of information from a given forecast target period being33

used in the evaluation of that forecast. It is crucial to also avoid information contamination34

by inadvertently using information from the target decade when interpreting the ensemble35
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into a forecast distribution (Bröcker and Smith 2008). This cannot be done rigorously in36

the case of simulation models, as the structure and parameters of the models themselves37

have evolved in light of the observations of the last fifty years. The true-leave-one-out cross-38

validation procedure described in the main maunuscript avoids any explict use of data from39

within the target forecast period, even as its implicit use cannot be avoided. In practice this40

is achieved by leaving out the target decade, then using a standard leave-one-out procedure41

to fit the kernel parameters for each forecast in turn.42

Figure 4 shows an example of the kernel parameters used for the HadGem2 model, fitted43

using the true-leave-one-out protocol. The top two panels of figure 4 illustrate the mean44

Ignorance score as a function of kernel width over the full set of hindcast simulations (i.e.45

with no cross-validation) for lead time one and lead time six. The vertical bars indicate46

the values of the kernel width parameter that were used for each forecast using the true-47

leave-one-out approach. In both cases the fact that fewer than nine vertical bars are visible48

indicates that several of the forecasts were generated using the same kernel width values.49

Note that at lead time six for HadGem2 the kernel width values used are much smaller than50

for lead time one (and for all other lead times). In this particular case the model is rewarded51

for a forecast distribution that has kernel widths much smaller than the standard deviation52

of the ensemble spread.53

The bottom panels of figure 4 show the mean Ignorance as a function of kernel offset54

over the full set of hindcast simulations. Once again the vertical bars indicate the values of55

offset that were used for the individual forecasts, based on minimising Ignorance through the56

true-leave-one out protocol. Once again, at lead time six the fitting protocol favours a kernel57

offset under true-leave-one-out cross-validation that falls outside the minimum Ignorance58
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value without cross-validation. The result for lead time one is typical of the kernel offset59

values attained for the other lead times.60

3. Regional analysis61

Figures 5 to 25 show Ignorance as a function of lead time for each of the ENSEMBLES62

models relative to the DC empirical model for surface air temperature over each of the63

land-based Giorgi regions (Giorgi 2002). At Giorgi region scales the decadal probability64

forecasts from the ENSEMBLES models perform to a similar quality as for the global mean65

temperature in some cases, or significantly worse in others. In some regions and at some66

lead times DC outperforms the ENSEMBLES models by more than 4 bits; DC placing over67

16 (24) times more probability mass on the verification than the simulation model. In these68

figures no simulation model demonstrates skill significantly above the DC model for any69

lead time or any region; positive values of the relative Ignorance performance measure are70

reported in all of the cases below.71

4. Robustness to the peformance measure72

While Ignorance is effectively the only proper local score for the evaluation of probability73

forecasts (Good 1952), there are a variety of other proper scores that are commonly used74

in forecast evaluation (Jolliffe and Stephenson 2003). Figures 26 and 27 demonstrate that75

the results presented in the main text for global mean surface temperature are robust when76

considered under two alternative scores, the Proper Linear score (PL) and the Continuous77
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Ranked Probability Score (CRPS) (Jolliffe and Stephenson 2003). In each of these cases,78

the lower the score the better the forecast. In each case all the models are ranked similarly79

by the different scores, with DC demonstrating lower scores compared to the ENSEMBLES80

models.81

5. Alternative empirical models82

The use of hindcasts in forecast evaluation unavoidably introduces information contam-83

ination, as the target of the hindcast is known when the hindcast is made. Thus it is useful84

to demonstrate that the results of hindcast evaluation are robust to variations in the param-85

eters and even the structure of empirical models, as doing so can identify cases where the86

hindcast system may have been over-fit in-sample. For the DC empirical model presented in87

this paper, all data from each target decade being forecast was withheld when constructing88

that forecast to avoid information contamination. Further avoidance of such information89

contamination can be achieved in the case of empirical models by using only data from a90

period prior to each forecast launch date and by using a simple model structure. In this91

section, two Prelaunch empirical models (defined in the main text) are illustrated below,92

and their robustness to the model parameters examined.93

The Prelaunch Dynamic Climatology (Prelaunch DC) model is structurally identical to94

the DC model of the main manuscript, however only inputs dated before the launch date are95

used either in the ensemble forecast or in its interpretation into a probability distribution,96

and so on. While the kernel width used in the standard DC model is determined by cross-97

validation, this need not be done for the Prelaunch DC model as only the observations98
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available before the forecast launch time are used.99

Examining the of the score to variations in the parameters can reveal overfitting. Figure100

28 shows the skill of the Prelaunch DC for values of the kernel width ranging from 0.02 to101

0.16 for forecast lead times of one to ten years. Ignorance relative to the standard DC model102

is shown. The sensitivity of the Prelaunch DC model to variation in the starting date for the103

forecast-outcome archive (not shown) is less than the sensitivity to the kernel width. Start104

dates from 1900 to 1950 were considered; the later start dates tend to yield more skilful105

models. The Prelaunch DC discussed in the main text uses a start date of 1950 and a width106

of 0.08, although this value does not correspond to the lowest in-sample skill - as shown in107

figure 29. Furthermore the ensemble interpretation of the simulations models reported in108

this paper use data both before and after the target window, giving those simulation models109

an unquantified advantage over the empirical models defined here.110

Figure 29 shows the mean Ignorance score over the set of DC and Prelaunch DC hindcasts111

as a function of the kernel width parameter. The panels on the left of figure 29 correspond112

to lead times one (a), six (c) and ten (e) respectively for the standard DC model, and the113

panels on the right correspond to the same lead times for the Prelaunch DC model. In114

each case the vertical bars correspond to the values of kernel spread adopted for each model115

in the main manuscript (note that for the standard DC model these values were attained116

under true-leave-one-out cross-validation and for the Prelaunch DC model a value of 0.08117

was chosen since cross-validation is not necessary in this case). The fact that there is no118

significant difference in skill between the standard DC and Prelaunch DC models over a119

range of kernel dressing parameters indicates that the overall conclusions drawn from the120

ENSEMBLES model evaluations are not overly sensitive to the particular choice of DC or121
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Prelaunch DC model parameters.122

A Prelaunch trend model is also discussed in the main text. This model is fully defined123

by the initial time anchor from which the trend is estimated. Figure 30 shows the skill of124

this model relative to the standard DC model for several anchor times between 1900 and125

1950. The results in the main text use the 1950 anchor time. It is shown that although126

there is some sensitivity to the anchor time, all the Prelaunch trend models are generally127

less skillful than the standard DC model.128

The figures presented in this supplementary material demonstrate that the skill of the129

empirical models is robust under relatively large variations in their free parameters. This130

level of skill remains comparable with, and in some cases superior to, that of the simulation131

models from ENSEMBLES.132

133

REFERENCES134
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List of Figures146

1 Forecast distributions for IFS/HOPE (ECMWF) for the 5-95th percentile.147

The HadCRUT3 observed temperatures are shown in blue. Each forecast is148

ten years long and they are launched every five years. To avoid overlap of149

the fan charts they are presented on two panels. The top (bottom) panel150

illustrates forecasts launched in ten year intervals from 1960 (1965). It is151

shown that the observed global mean temperature often falls outside the 5-152

95th percentile of the predicted distributions. 16153

2 Forecast distributions for ARPEGE/OPA (CERFACS) for the 5-95th per-154

centile. The HadCRUT3 observed temperatures are shown in blue. The top155

(bottom) panel illustrates forecasts launched in ten year intervals from 1960156

(1965). It is shown that the observed global mean temperature often falls157

outside the 5-95th percentile of the predicted distributions. 17158

3 Forecast distributions for ECHAM5 (IFM-GEOMAR) for the 5-95th per-159

centile. The HadCRUT3 observed temperatures are shown in blue. The top160

(bottom) panel illustrates forecasts launched in ten year intervals from 1960161

(1965). It is shown that the observed global mean temperature falls outside162

the 5-95th percentile of the predicted distributions on several occasions. 18163
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4 Ignorance as a function of kernel dressing parameters over the full set of164

hindcast simulations (i.e. with no cross-validation) for the HadGem2 model165

at lead time one (a and c) and lead time six (b and d). The top panels (a and166

b) show the score as a function of the kernel width parameter and the bottom167

panels (c and d) show the score as a function of the kernel offset parameter.168

The vertical bars in each case illustrate the kernel parameters obtained for169

each individual forecast under true-leave-one-out cross-validation. That there170

are fewer than nine vertical bars indicates that the kernel parameter values171

shown were obtained for several forecasts in the set. Results for lead times172

two to five and seven to ten (not shown) are similar to those shown for lead173

time one. 19174

5 Ignorance of the ENSEMBLES simulation models relative to the DC model for175

Alaska. Scores above zero indicate that the DC model outperforms the simu-176

lation models, placing significantly more probability on the observed outcome177

than the ENSEMBLES models. 20178

6 Ignorance of the ENSEMBLES simulation models relative to the DC model179

for Amazon Basin. Scores above zero indicate that the DC model outperforms180

the simulation models, placing significantly more probability on the observed181

outcome than the ENSEMBLES models. 21182

7 Ignorance of the ENSEMBLES simulation models relative to the DC model183

for Australia. Scores above zero indicate that the DC model outperforms184

the simulation models, placing significantly more probability on the observed185

outcome than the ENSEMBLES models. 22186
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8 Ignorance of the ENSEMBLES simulation models relative to the DC model for187

Central America. Scores above zero indicate that the DC model outperforms188

the simulation models, placing significantly more probability on the observed189

outcome than the ENSEMBLES models. 23190

9 Ignorance of the ENSEMBLES simulation models relative to the DC model191

for Central Asia. Scores above zero indicate that the DC model outperforms192

the simulation models, placing significantly more probability on the observed193

outcome than the ENSEMBLES models. 24194

10 Ignorance of the ENSEMBLES simulation models relative to the DC model195

for Central North America. Scores above zero indicate that the DC model196

outperforms the simulation models, placing significantly more probability on197

the observed outcome than the ENSEMBLES models. 25198

11 Ignorance of the ENSEMBLES simulation models relative to the DC model199

for Eastern Africa. Scores above zero indicate that the DC model outperforms200

the simulation models, placing significantly more probability on the observed201

outcome than the ENSEMBLES models. 26202

12 Ignorance of the ENSEMBLES simulation models relative to the DC model203

for Eastern North America. Scores above zero indicate that the DC model204

outperforms the simulation models, placing significantly more probability on205

the observed outcome than the ENSEMBLES models. 27206
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13 Ignorance of the ENSEMBLES simulation models relative to the DC model207

for East Asia. Scores above zero indicate that the DC model outperforms208

the simulation models, placing significantly more probability on the observed209

outcome than the ENSEMBLES models. 28210

14 Ignorance of the ENSEMBLES simulation models relative to the DC model211

for Greenland. Scores above zero indicate that the DC model outperforms212

the simulation models, placing significantly more probability on the observed213

outcome than the ENSEMBLES models. 29214

15 Ignorance of the ENSEMBLES simulation models relative to the DC model215

for Mediterranian Basin. Scores above zero indicate that the DC model out-216

performs the simulation models, placing significantly more probability on the217

observed outcome than the ENSEMBLES models. 30218

16 Ignorance of the ENSEMBLES simulation models relative to the DC model219

for North Asia. Scores above zero indicate that the DC model outperforms220

the simulation models, placing significantly more probability on the observed221

outcome than the ENSEMBLES models. 31222

17 Ignorance of the ENSEMBLES simulation models relative to the DC model for223

Northern Europe. Scores above zero indicate that the DC model outperforms224

the simulation models, placing significantly more probability on the observed225

outcome than the ENSEMBLES models. 32226
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18 Ignorance of the ENSEMBLES simulation models relative to the DC model for227

Southern Africa. Scores above zero indicate that the DC model outperforms228

the simulation models, placing significantly more probability on the observed229

outcome than the ENSEMBLES models. 33230

19 Ignorance of the ENSEMBLES simulation models relative to the DC model for231

Sahara. Scores above zero indicate that the DC model outperforms the simu-232

lation models, placing significantly more probability on the observed outcome233

than the ENSEMBLES models. 34234

20 Ignorance of the ENSEMBLES simulation models relative to the DC model235

for South Asia. Scores above zero indicate that the DC model outperforms236

the simulation models, placing significantly more probability on the observed237

outcome than the ENSEMBLES models. 35238

21 Ignorance of the ENSEMBLES simulation models relative to the DC model239

for Southeast Asia. Scores above zero indicate that the DC model outperforms240

the simulation models, placing significantly more probability on the observed241

outcome than the ENSEMBLES models. 36242

22 Ignorance of the ENSEMBLES simulation models relative to the DC model243

for Southern South America. Scores above zero indicate that the DC model244

outperforms the simulation models, placing significantly more probability on245

the observed outcome than the ENSEMBLES models. 37246
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23 Ignorance of the ENSEMBLES simulation models relative to the DC model for247

Tibet. Scores above zero indicate that the DC model outperforms the simu-248

lation models, placing significantly more probability on the observed outcome249

than the ENSEMBLES models. 38250

24 Ignorance of the ENSEMBLES simulation models relative to the DC model251

for Western Africa. Scores above zero indicate that the DC model outperforms252

the simulation models, placing significantly more probability on the observed253

outcome than the ENSEMBLES models. 39254

25 Ignorance of the ENSEMBLES simulation models relative to the DC model255

for Western North America. Scores above zero indicate that the DC model256

outperforms the simulation models, placing significantly more probability on257

the observed outcome than the ENSEMBLES models. 40258

26 Proper linear score for each of the ENSEMBLES simulation models and the259

DC empirical model. Lower scores indicate better foecasts. The DC model is260

shown to outperform the simulations models at most lead times. 41261

27 CRPS score for each of the ENSEMBLES simulation models and the DC262

empirical model. Lower scores indicate better forecasts. The DC model is263

shown to outperform the simulations models at most lead times. 42264

28 Ignorance of the Prelaunch DC empirical model with kernel widths as la-265

belled relative to the cross-validation DC model. Increasing the kernel width266

parameter from 0.02 to 0.16 results in a loss of skill of approximately half267

a bit, although for the kernel width value used in this paper (0.08) there is268

shown to be no significant loss of skill relative to the standard DC model. 43269
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29 Ignorance as a function of the kernel width parameter over the full set of270

hindcast simulations (i.e. with no cross-validation) for the DC (left panels)271

and Prelaunch DC (right panels) models at lead time one (a and b), six272

(c and d) and ten (e and f). The vertical bars in each case illustrate the273

kernel width parameters employed in the main manuscript. In the DC model274

parameters were attained through true-leave-one-out cross-validation. In the275

Prelaunch DC model a kernel spread value of 0.08 was chosen for comparison276

with DC and to test the robustness of the results to choices in the parameters277

for ensemble interpretation (although this value does not correspond to the278

lowest value of in-sample skill). 44279

30 Ignorance of the Prelaunch trend empirical model for different anchor times280

relative to the cross-validation DC model. Scores above zero indicate that281

DC outperforms the Prelaunch Trend model by up to half a bit at early lead282

times, and up to two bits (DC placing up to 4 times more probability on the283

observed outcome than the Prelaunch Trend model) up to ten years ahead,284

depending on the anchor year for the trend model. 45285
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Fig. 1. Forecast distributions for IFS/HOPE (ECMWF) for the 5-95th percentile. The
HadCRUT3 observed temperatures are shown in blue. Each forecast is ten years long and
they are launched every five years. To avoid overlap of the fan charts they are presented on
two panels. The top (bottom) panel illustrates forecasts launched in ten year intervals from
1960 (1965). It is shown that the observed global mean temperature often falls outside the
5-95th percentile of the predicted distributions.
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Fig. 2. Forecast distributions for ARPEGE/OPA (CERFACS) for the 5-95th percentile.
The HadCRUT3 observed temperatures are shown in blue. The top (bottom) panel il-
lustrates forecasts launched in ten year intervals from 1960 (1965). It is shown that the
observed global mean temperature often falls outside the 5-95th percentile of the predicted
distributions.
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Fig. 3. Forecast distributions for ECHAM5 (IFM-GEOMAR) for the 5-95th percentile. The
HadCRUT3 observed temperatures are shown in blue. The top (bottom) panel illustrates
forecasts launched in ten year intervals from 1960 (1965). It is shown that the observed
global mean temperature falls outside the 5-95th percentile of the predicted distributions on
several occasions.
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simulations (i.e. with no cross-validation) for the HadGem2 model at lead time one (a and
c) and lead time six (b and d). The top panels (a and b) show the score as a function of
the kernel width parameter and the bottom panels (c and d) show the score as a function of
the kernel offset parameter. The vertical bars in each case illustrate the kernel parameters
obtained for each individual forecast under true-leave-one-out cross-validation. That there
are fewer than nine vertical bars indicates that the kernel parameter values shown were
obtained for several forecasts in the set. Results for lead times two to five and seven to ten
(not shown) are similar to those shown for lead time one.
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Fig. 5. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Alaska. Scores above zero indicate that the DC model outperforms the simulation mod-
els, placing significantly more probability on the observed outcome than the ENSEMBLES
models.
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Fig. 6. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Amazon Basin. Scores above zero indicate that the DC model outperforms the simulation
models, placing significantly more probability on the observed outcome than the ENSEM-
BLES models.
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Fig. 7. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Australia. Scores above zero indicate that the DC model outperforms the simulation mod-
els, placing significantly more probability on the observed outcome than the ENSEMBLES
models.
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Fig. 8. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Central America. Scores above zero indicate that the DC model outperforms the simulation
models, placing significantly more probability on the observed outcome than the ENSEM-
BLES models.
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Fig. 9. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Central Asia. Scores above zero indicate that the DC model outperforms the simulation
models, placing significantly more probability on the observed outcome than the ENSEM-
BLES models.
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Fig. 10. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Central North America. Scores above zero indicate that the DC model outperforms the
simulation models, placing significantly more probability on the observed outcome than the
ENSEMBLES models.
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Fig. 11. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Eastern Africa. Scores above zero indicate that the DC model outperforms the simulation
models, placing significantly more probability on the observed outcome than the ENSEM-
BLES models.
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Fig. 12. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Eastern North America. Scores above zero indicate that the DC model outperforms the
simulation models, placing significantly more probability on the observed outcome than the
ENSEMBLES models.
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Fig. 13. Ignorance of the ENSEMBLES simulation models relative to the DC model for
East Asia. Scores above zero indicate that the DC model outperforms the simulation mod-
els, placing significantly more probability on the observed outcome than the ENSEMBLES
models.
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Fig. 14. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Greenland. Scores above zero indicate that the DC model outperforms the simulation mod-
els, placing significantly more probability on the observed outcome than the ENSEMBLES
models.
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Fig. 15. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Mediterranian Basin. Scores above zero indicate that the DC model outperforms the sim-
ulation models, placing significantly more probability on the observed outcome than the
ENSEMBLES models.
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Fig. 16. Ignorance of the ENSEMBLES simulation models relative to the DC model for
North Asia. Scores above zero indicate that the DC model outperforms the simulation mod-
els, placing significantly more probability on the observed outcome than the ENSEMBLES
models.

31



D
RA
FT

-2

-1

 0

 1

 2

 3

 4

 5

 6

 0  2  4  6  8  10

R
el

at
iv

e 
Ig

no
ra

nc
e 

(t
o 

D
C

)

Lead time (years)

Northern Europe

HadGem2
IFS/HOPE

ARPEGE4/OPA
ECHAM5

Fig. 17. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Northern Europe. Scores above zero indicate that the DC model outperforms the simulation
models, placing significantly more probability on the observed outcome than the ENSEM-
BLES models.
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Fig. 18. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Southern Africa. Scores above zero indicate that the DC model outperforms the simulation
models, placing significantly more probability on the observed outcome than the ENSEM-
BLES models.
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Fig. 19. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Sahara. Scores above zero indicate that the DC model outperforms the simulation mod-
els, placing significantly more probability on the observed outcome than the ENSEMBLES
models.
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Fig. 20. Ignorance of the ENSEMBLES simulation models relative to the DC model for
South Asia. Scores above zero indicate that the DC model outperforms the simulation mod-
els, placing significantly more probability on the observed outcome than the ENSEMBLES
models.
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Fig. 21. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Southeast Asia. Scores above zero indicate that the DC model outperforms the simulation
models, placing significantly more probability on the observed outcome than the ENSEM-
BLES models.
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Fig. 22. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Southern South America. Scores above zero indicate that the DC model outperforms the
simulation models, placing significantly more probability on the observed outcome than the
ENSEMBLES models.
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Fig. 23. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Tibet. Scores above zero indicate that the DC model outperforms the simulation mod-
els, placing significantly more probability on the observed outcome than the ENSEMBLES
models.
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Fig. 24. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Western Africa. Scores above zero indicate that the DC model outperforms the simulation
models, placing significantly more probability on the observed outcome than the ENSEM-
BLES models.
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Fig. 25. Ignorance of the ENSEMBLES simulation models relative to the DC model for
Western North America. Scores above zero indicate that the DC model outperforms the
simulation models, placing significantly more probability on the observed outcome than the
ENSEMBLES models.
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Fig. 26. Proper linear score for each of the ENSEMBLES simulation models and the DC em-
pirical model. Lower scores indicate better foecasts. The DC model is shown to outperform
the simulations models at most lead times.
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Fig. 27. CRPS score for each of the ENSEMBLES simulation models and the DC empirical
model. Lower scores indicate better forecasts. The DC model is shown to outperform the
simulations models at most lead times.
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Fig. 28. Ignorance of the Prelaunch DC empirical model with kernel widths as labelled
relative to the cross-validation DC model. Increasing the kernel width parameter from 0.02
to 0.16 results in a loss of skill of approximately half a bit, although for the kernel width
value used in this paper (0.08) there is shown to be no significant loss of skill relative to the
standard DC model.
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Fig. 29. Ignorance as a function of the kernel width parameter over the full set of hindcast
simulations (i.e. with no cross-validation) for the DC (left panels) and Prelaunch DC (right
panels) models at lead time one (a and b), six (c and d) and ten (e and f). The vertical bars
in each case illustrate the kernel width parameters employed in the main manuscript. In
the DC model parameters were attained through true-leave-one-out cross-validation. In the
Prelaunch DC model a kernel spread value of 0.08 was chosen for comparison with DC and
to test the robustness of the results to choices in the parameters for ensemble interpretation
(although this value does not correspond to the lowest value of in-sample skill).

44



D
RA
FT

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0  2  4  6  8  10

Ig
no

ra
nc

e 
(r

el
at

iv
e 

to
 D

C
)

Lead time (years)

Prelaunch Trend (1900 anchor)
Prelaunch Trend (1925 anchor)
Prelaunch Trend (1940 anchor)
Prelaunch Trend (1950 anchor)

Fig. 30. Ignorance of the Prelaunch trend empirical model for different anchor times relative
to the cross-validation DC model. Scores above zero indicate that DC outperforms the
Prelaunch Trend model by up to half a bit at early lead times, and up to two bits (DC
placing up to 4 times more probability on the observed outcome than the Prelaunch Trend
model) up to ten years ahead, depending on the anchor year for the trend model.
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