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Abstract
Can today’s global climate model ensembles characterize the 21st century climate in their own
‘model-worlds’? This question is at the heart of how we design and interpret climate model
experiments for both science and policy support. Using a low-dimensional nonlinear system
that exhibits behaviour similar to that of the atmosphere and ocean, we explore the
implications of ensemble size and two methods of constructing climatic distributions, for the
quantification of a model’s climate. Small ensembles are shown to be misleading in
non-stationary conditions analogous to externally forced climate change, and sometimes also
in stationary conditions which reflect the case of an unforced climate. These results show that
ensembles of several hundred members may be required to characterize a model’s climate and
inform robust statements about the relative roles of different sources of climate prediction
uncertainty.
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1. Introduction

Multi-decadal climate model projections are key inputs to
the Intergovernmental Panel on Climate Change (IPCC)
assessment reports and to climate policy negotiations (IPCC
2007). Uncertainty in these projections has been categorized
as forcing, initial condition (IC) and model uncertainty (Cox
and Stephenson 2007, Stainforth et al 2007). These represent,
respectively, the consequences of uncertainty in future
greenhouse gas concentrations, in the details of the current
state of the system, and in our knowledge of and abilities to
represent the Earth system in a computer model. Cox and
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Stephenson (2007) argued that on multi-decadal timescales
IC uncertainty was relatively unimportant; an argument
supported by subsequent analysis of the ensemble produced
by the third Climate Model Intercomparison Project (CMIP3)
(Hawkins and Sutton 2009). This implies that relatively
small IC ensembles are appropriate for multi-decadal climate
change prediction. Here, using results from a low-dimensional
nonlinear system that exhibits climate-like behaviour, we
demonstrate that this conclusion is ill-founded in both
non-stationary conditions analogous to externally forced
climate change, and also in stationary conditions analogous
to an unforced climate. The results show that IC ensembles
of several hundred members may be required to characterize
a model’s climate and inform robust statements about
the relative role of different sources of climate prediction
uncertainty. The IC ensembles in CMIP3 and CMIP5 are
likely too small to reliably quantify their climate distributions
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and are therefore unable to characterize future climate even
within their own ‘model-worlds’.

Our focus is solely on IC uncertainty because there
are fewer conceptual barriers in its quantification and it
provides a lower bound on the uncertainty which must be
assigned to the probabilities generated by multi-uncertainty
assessments, such as the probabilistic climate predictions
(e.g. Tebaldi et al 2005, Murphy et al 2009) used in many
impact studies and in adaptation planning (e.g. Groves et al
2008, Manning et al 2009, DEFRA 2012). IC uncertainty
provides a means of quantifying probabilities within a given
model and a given forcing scenario. Its importance and the
risks of its under-sampling are well understood within the
meteorological (Epstein 1969, Palmer 1993, Collins 2002)
and nonlinear systems (Grebogi et al 1987, Chu 1999)
literatures but it is often taken to be relatively unimportant for
decadal and multi-decadal climate prediction. If this source of
uncertainty is not well quantified, however, then multi-model
based probabilistic climate predictions will inevitably inherit
the errors in the distributions representative of each model,
implying that their probabilities are not reliable for use as such
in societal planning (DEFRA 2012). Consider, for instance,
the development of a river flood protection scheme using
probabilistic predictions for the exceedance of specific rainfall
thresholds. A lack of awareness of errors resulting from
IC under-sampling could lead to overconfidence resulting
in either over-adaptation, with significant additional costs,
or under-adaptation leaving residual and unexpected risk.
While there are other reasons to doubt the reliability of the
probabilities generated in today’s probabilistic predictions for
impact assessments (Oreskes et al 2010, Frigg et al 2013),
and there remain conceptual challenges in the assessment of
model uncertainty (Stainforth et al 2007), nevertheless any
future means of generating probabilities from multi-model
ensembles will be flawed if the inputs do not adequately
represent the underlying models. Thus for both the provision
of information to society via climate services (WMO 2011)
and for modelling experiments designed to help us better
understand the climate system, the size of IC ensembles
must be sufficient to adequately quantify the future climatic
distributions within the model. This is true irrespective of
the relative contribution of forcing, model and IC uncertainty
and has significant implications for the assignment of
computational resources in climate modelling experiments.

Herein we assess what size of IC ensemble may be
adequate to evaluate the climate distributions within a
particular model. As a context for the experiment we begin,
in section 2, with a discussion of some conceptual issues
in modelling climate, drawing on research in the nonlinear
systems community to inform the role of IC uncertainty in
climate prediction. With this as background section 2 then
describes the layout of the rest of the letter.

2. Defining climate: conceptual approaches to
modelling the climate system

The atmosphere–ocean system is a nonlinear system (Rial
et al 2004) whose long term behaviour has been conceptually

associated with an attractor (Fraedrich 1986, Lorenz 1991,
Sahay and Sreenivasan 1996, Palmer 1999). If the boundary
conditions were fixed, then the ‘climate’ of the system
could be considered as the variable distributions on this
attractor. In reality the climate system is not stationary but
subject to natural and anthropogenic forcing variations. Such
a definition is therefore not directly relevant to the real
world and can only be quantified for a model. Furthermore,
and irrespective of the stationarity or non-stationarity of
the system, when making multi-decadal climate predictions
we do not want to consider all possible states of the
system, only those consistent with current and recent
observations. Consider, for instance, the current patterns of
ocean circulation and land surface vegetation. These influence
the climate of today, not just the weather, and constrain the
climatic distributions of the future. This is the case despite
the fact that we know that alternative patterns, and therefore
alternative future distributions, would be consistent with the
physical/biological processes and boundary conditions of
the climate system. For the purposes of climate prediction,
therefore, it is most useful to view climate as a distribution
conditioned on our knowledge of the system’s state at some
point in time (Stainforth et al 2007). This knowledge is of
course never perfect so within a model, ‘climate’ can be taken
as the distribution resulting from an IC ensemble constructed
using uncertainty in the system’s state on a chosen reference
date.

This approach raises conceptual issues. It is conceivable
that multiple attractors coexist and the system is intransitive;
that is to say the system can only pass through a subset
of the possible system states—the subset being determined
by the initial state (Lorenz 1970). For some intransitive
nonlinear systems, a very small change in the initial state of
the system does not just limit predictability due to chaos but
can also change the attractor (and therefore climate) to which
the system evolves (McDonald et al 1985). If dynamical
system features of this nature, such as riddled basins of
attraction (Viana et al 2009), were found in climate models
then the model distributions from an IC ensemble could be
dependent on the finest details of the chosen ICs (Lorenz
1968, 1976). The above interpretation of climate would then
be ill-defined. We do not know if this is the case for Global
Climate Models (GCMs), let alone the real climate system,
so our starting point is to demonstrate a process for resolving
this question by evaluating the distributions over long time
periods in an analogous nonlinear system. Only distributions
of single variables are considered because this approach could
be equally well applied to variables from the very large
state space of a GCM, where mapping the entire attractor is
infeasible.

Taking this nonlinear dynamical systems perspective, in
section 3 we introduce a climate-like system that, in section 4,
we use to explore the process of quantifying climate in a
climate prediction context. In section 4.1, we consider how to
evaluate the distributions of individual variables of the system
over long time periods, assuming no changes in forcing. The
value of IC ensembles for this purpose is assessed. Next, in
section 4.2, we explore how to use ensembles to quantify
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climate over shorter timeframes, conditioned on knowledge of
the system state at some point in time. Finally, in section 4.3
we apply the same methodology under changing forcing
conditions; providing an analogy with 21st century climate
change. Section 5 contains a discussion of the implications
of our results for climate prediction and the interpretation of
climate model output in policy decisions.

3. The Lorenz-84/Stommel-61 coupled model

Our system consists of the Lorenz-84 model with sinusoidal
seasonal forcing (Lorenz 1984, 1990, Broer et al 2002,
2003), coupled to the Stommel-61 ocean box model (Stommel
1961, Roebber 1995, Van Veen et al 2001)—see the
supplementary materials (available at stacks.iop.org/ERL/8/
034021/mmedia). By comparison with GCMs which have
>105 dimensional state spaces, this is a very simple climate
model. Yet it is informative about the climate system because
it is nonlinear, chaotic and includes high frequency variations
representative of the atmosphere (X,Y,Z variables in figure 1)
and low frequency variations representative of the ocean (T, S
variables in figure 1). As pointed out by Smith (2002), ‘it is
unreasonable to expect solutions to low-dimensional problems
to generalize to million dimensional spaces, (but) so too it
is unlikely that problems identified in the simplified models
will vanish in operational models’. In this case the variables
within the model are representative of large scale circulation
patterns in the atmosphere and ocean (see the supplementary
materials), providing a direct physical link to climate. The
model is therefore not only a tool with which it is practical
to run extremely large ensembles but it is also relevant as
an illustration of the behaviour which might credibly be
expected in the climate system and the challenges likely to be
encountered in studying the climate prediction problem with
GCMs.

The evolution of model trajectories in the atmosphere and
ocean components are shown in figure 1. The atmospheric
behaviour is strongly influenced by the state of the ocean;
both exhibit variability on multi-decadal timescales (see the
supplementary materials and figure S5 available at stacks.iop.
org/ERL/8/034021/mmedia). In our analysis we focus on the
ocean variables for simplicity of presentation.

4. Quantifying the model’s climate

4.1. Determining the model climate from single trajectories

Distributions of the ocean variables are first determined from
a 100 000 year simulation of the model (figures 2(a) and (b)).
These distributions are then compared to distributions built up
from an alternative trajectory over shorter simulation periods
(figures 2(c) and (d)). The comparison is made using the
Kolmogorov–Smirnov (KS) statistic, D (Massey 1951, Miller
1956, Press et al 1992) which is defined as the maximum
difference in probability between two cumulative distribution
functions; D = 0 if the distributions are identical and D = 1 if
they are entirely different. In figure 2, D therefore represents
the maximum error in the probability of exceedance of any

Figure 1. Trajectories of the L84-S61 model: ocean variables
(latitudinal temperature (T) and salinity (S) differences) on the main
axes, atmospheric variables (X,Y,Z) on insets. Ocean variables
show 10 000 year simulations; atmospheric variables a single year.
(a) and (b) show trajectories for Fm = 7 while (c) and (d) show
trajectories for Fm = 8. Red points show the IC locations of 10 000
member ensembles. For single ocean variable time series see
supplementary figure S3 (available at stacks.iop.org/ERL/8/034021/
mmedia) (Fm = 7) and figure S4 (available at stacks.iop.org/ERL/8/
034021/mmedia) (Fm = 8).

threshold for the chosen variable, when using distributions
constructed over shorter timeframes as opposed to the one
constructed over 100 000 years. Thus, the greater D, the
greater the error in quantifying the variable’s probability
distribution; if D= 0.2 then the probability of exceeding some
threshold will be more or less than the estimated value by 0.2.

While the two simulations do eventually converge
towards similar distributions, figures 2(c) and (d) show
that reliable estimates of the model’s long term climate
require a single simulation of tens of thousands of years.
For timescales less than ∼1000 years, the distributions are
substantially different (D > 0.1, median value) from the
long term distribution. Even after 30 000 years there are
distinguishable differences5 (D > 0.030 (S),D > 0.018 (T);
median values). Can an ensemble of simulations quantify the
model’s climate more quickly? Yes. Distributions constructed
from the combination of three (red) or ten (blue) member
IC ensembles are more likely to better represent the model’s
long term climate for any length of simulation. However,
such ensembles are not more computationally efficient; the
distributions built from ten (three) member ensembles are not
more reliable than the distribution from a single simulation
of ten (three) times the length and therefore the same
computational requirement. Uncertainty in these comparisons
is quantified by repeating the process one hundred times
with different ICs centred on the same starting conditions
(i.e. the same region of the model’s state space—see the
supplementary materials). That all the ensemble members
converge to the same distribution suggests that this system
is transitive as opposed to intransitive; that is to say it will

5 A 2-sample KS test (Wilks 2011) rejects the null hypothesis that the two
distributions are from the same underlying distribution at >99% significance
level.
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Figure 2. Convergence of distributions constructed from increasingly long trajectories, towards the long term distribution. (a) and (b) show
normalized frequency distributions of S (a) and T (b) extracted from a single 100 000 year simulation. (c) and (d) show the difference,
quantified by the KS statistic, between the (a) and (b) distributions and those generated using shorter simulations, for S (c) and T (d). The
distributions are constructed from either single simulations (black) or by combining data up to the given time point from multiple
simulations with different ICs; red—three simulations, blue—ten simulations. Uncertainty is quantified by repeating the process 100 times
using different ICs distributed around the same location on the attractor (see figure 1 and the supplementary materials available at stacks.
iop.org/ERL/8/034021/mmedia); error bars do not therefore represent uncertainty in our assessment of D but rather the distribution of
values from which any particular simulation/ensemble may be considered a draw. Lines connect the median values at each time point; errors
are the 10th–90th percentiles.

pass through all of the possible system states over infinite
time (Lorenz 1970). Simulations based on ICs centred on very
different starting conditions (macroscopic initial condition
uncertainty; Stainforth et al 2007) show the same result. Thus
the model’s climate appears not to be sensitive to the finest
details of the chosen ICs and distributions constructed from
sufficiently large IC ensembles are likely to be robust.

4.2. Determining the model climate from IC ensembles

Taking future climate as a distribution conditioned on our
uncertain knowledge of the system’s current state (Stainforth
et al 2007), requires such IC ensembles to quantify this
distribution within any given model. A 10 000 member IC
ensemble is therefore run from a specific location on the
attractor (figure 1); individual members are prescribed ICs
randomly selected from Gaussian distributions around this
location, as might result from observational uncertainty in
the real-world climate (see the supplementary materials).
The subsequent distributions of the ocean variables broaden
rapidly, approaching the long term distribution after about
100 years (figures 3(a) and (b)). Over shorter periods the
information in the ICs is evident in the distributions, not just in
single trajectories; i.e. the probability of different states of the
system (its climate), conditioned on an uncertain knowledge
of the current state, is different from that experienced over
very long timeframes. IC ensembles enable us to quantify
these transient climate distributions. An important question
for global climate modelling experiments is whether today’s
ensembles are sufficiently large to make such quantifications.

In contemporary climate modelling studies there may
be only a single simulation or a small IC ensemble; a

minimum of three is specified in CMIP5 (WCRP 2011).
Climate variable distributions are therefore constructed over
a time period; typically 30 years (WMO 1996, Burroughs
2003). An assumption is being made here that the distribution
over time is representative of the distribution of possible states
at an instant; we describe this as the kairodic assumption
due to its similarity, in general terms, with the widely
studied ergodic assumption6. In this model, even under
stationary forcing conditions (constant parameters), such an
assumption can be misleading. Using the 10 000 member IC
ensemble distribution as the reference climatic distribution
for each point in time, figures 4(a) and (b) show that small
ensembles (≤9) using this approach provide substantially
different results (D > 0.1 (T),D > 0.2 (S); median values).
This implies that climate model ensembles of this size
should not be interpreted probabilistically. Maintaining the
kairodic assumption in larger ensembles better quantifies
the distribution but can lead to convergence on the wrong
distribution; an effect particularly evident in these results in
the S variable at 30 years (figure 4(b), towards D = 0.18).
The instantaneous ensemble distributions converge towards
the correct distribution, by design, but the convergence is
slower because there are a factor of 30 fewer constituent data
points. For accurate results instantaneous interrogation of a
large IC ensemble is required, but if only small ensembles are
available using a 30 year time-slice can sometimes improve
the quantification of the distribution (e.g. compare the two
methods for a 30 member ensemble in figure 4(a)). This is

6 Ergodic comes from the Greek words ergon (work) and hodos (way,
journey or path). We propose the term kairodic from the Greek words kairos
(right or opportune moment) and hodos.
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Figure 3. Time-dependent probability density functions for T and S from 10 000 member ensembles. ICs are centred on the locations on
the attractor shown in figure 1 (see construction method in the supplementary materials available at stacks.iop.org/ERL/8/034021/mmedia).
Fm varies as follows: (a) and (b) Fm = 7; (c) and (d) Fm increases linearly from 7 to 8 over 100 years and is then fixed at Fm = 8; (e) and (f)
Fm decreases linearly from 8 to 7 over 100 years and is then fixed at Fm = 7. The legend shows the frequency of ensemble members per
0.01 ◦C (T), per 2.5× 10−6 psu (S). Single trajectories originating from the central state of the IC ensembles are shown in orange.

Figure 4. Comparisons of the ability of different methods and ensemble sizes to represent the model climate; each panel contains results
from the variable and forcing scenario of the corresponding panel in figure 3. Plots show the KS statistic between a 10 000 member IC
ensemble distribution constructed at 30 (blue) and 60 (red) years into a simulation with different methods of distribution construction. The
right side of each subplot uses distributions constructed at the given time point (referred to as ‘instantaneous’ distributions), with varying
ensemble size. The left side uses distributions constructed over a thirty year period around the given time point (‘kairodic’ distributions).
Uncertainty is quantified by repeating the process 100 times using different ICs distributed around the same location on the attractor (see
figure 1 and the supplementary materials available at stacks.iop.org/ERL/8/034021/mmedia). Dots represent the median; errors are the
10th–90th percentiles.

not the case, however, if the distribution itself is changing
nonlinearly, as seen in the S variable at 30 years (figure 4(b)).

Although from different simulations, in a transitive
system we expect the instantaneous ensemble distributions

to effectively be samples of the reference 10 000 ensemble
member distributions at the same point in time. This appears
to be the case as the right-hand side of the panels in figure 4
display values of D close to the statistically expected values
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given the size of the ensembles. In terms of quantifying the
distribution of errors in probability for a given ensemble size,
they provide a benchmark for the kairodic distributions shown
on the left-hand side of the panels in figure 4. For example,
the 3 member distribution using the kairodic assumption
contains 90 constituent data points and can be contrasted with
the 90 member instantaneous distribution; D = 0.09 (median
value) for both variables in the latter case while D ≥ 0.16
for T and D ≥ 0.27 for S (median values) in the former. For
both T and S the maximum errors in probability are greater
in the kairodic distributions; by 0.07 and 0.18 respectively
(median values). All kairodic distributions are different from
the 10 000 member instantaneous distributions at the 95%
significance level, where the critical value is Dα = 0.14 for the
3 member kairodic and 90 member instantaneous distributions
(see the supplementary materials for critical values at other
ensemble sizes).

4.3. Determining the model climate under climate change

Under transient climate change we can no longer use an
attractor to describe the system’s behaviour but the use
of IC ensembles remains informative (see Carvalho et al
2007 and Chekroun et al 2011 for discussion of attractors
in time-dependent dynamical systems). To represent this
situation here, a linear trend is applied to one of the parameters
in the model (Fm, the mean value of a forcing term related
to north–south temperature contrast). This takes the system
from the attractor associated with Fm = 7 (figures 1(a) and
(b)) to that associated with Fm = 8 (figures 1(c) and (d))
over a period of 100 years. Again a 10 000 member IC
ensemble, conditioned on the same starting state, is used to
quantify the changing climate over a 200 year simulation
(figures 3(c) and (d)). Here, as in the stationary case
above, the distributions derived using the kairodic assumption
converge on distributions different from the 10 000 member
instantaneous distributions (D > 0.13 in all cases). In most
cases the differences are greater than in the stationary case,
because the ensemble distributions determined using this
method now incorporate data representative of the climate
under a range of forcing conditions. This occurs despite the
forcing change in this experiment being linear; a consequence
of the model climate distributions responding nonlinearly.
The instantaneous distributions from large (≥300 member)
ensembles are more accurate than in the kairodic case and
similarly accurate to that found in the stationary situation
(D < 0.05; median value). With ensembles of thirty members
similarly accurate/inaccurate results are achieved whichever
interpretational method is applied despite the instantaneous
distributions containing a factor of 30 fewer data points.
Single simulations and small (≤9) ensembles again perform
very poorly.

The above results represent a situation in which the
‘forcing’ is towards a more constrained attractor with lower
variability on long timescales (see figures 1(c) and (d)).
We can investigate the consequences of moving towards a
less constrained attractor, with greater variability and regime
behaviour present on long timescales, by inverting the trend

and applying a linear decrease in Fm from Fm = 8 to 7 over
100 years. This scenario is more physically realistic since
the polar amplification mechanism is expected to result in a
decrease in the mean equator-to-pole temperature difference
over the 21st century (Masson-Delmotte et al 2006). Our
results (figures 3(e), (f), 4(e) and (f)), however, are not
predictive; only illustrative of possible behaviour and the
issues in ensemble interpretation. The same issues as in the
previous case are clear but now, perhaps surprisingly, the
kairodic approach gets worse as time progresses; for T at
60 years the instantaneous distribution from even a small, 30
member ensemble is likely to be closer to the model climate
than a 900 member ensemble distribution derived using the
kairodic approach (figure 4(e)). This can be explained by
the sudden change in distribution seen at about this point in
time in figure 3(e). The existence of such sudden changes
in distribution in GCMs would be of relevance to both
science and policy but cannot be distinguished from internal
variability if only small ensembles are available.

These findings do not change if the IC ensembles
originate in a different region of the model state space (see
supplementary figures S1 and S2 available at stacks.iop.org/
ERL/8/034021/mmedia).

5. Concluding remarks

On multi-decadal timescales we are increasingly interested
in the tails of climatic distributions (Seneviratne et al 2012,
Weitzman 2011); the unlikely but often most damaging
events. If climate models are to be used to say anything
about the probability of such events then the ensemble size
and method of construction of climate distributions must
be appropriate. Although this analysis has used a simple,
low-dimensional climate model, wide distributions of regional
responses have been found within GCM experiments using
IC ensembles with ≥40 members (Stainforth et al 2007,
Deser et al 2012) which suggests that similar results might
plausibly be expected in more complicated models. If they
were not found in such models it might be reasonable to
conclude that small IC ensembles are sufficient to quantify
their behaviour but it could also be taken as raising a concern
that such models are overly constrained in their potential
behaviour. GCMs are, of course, much more expensive to
run than the model presented here but the impetus to provide
probabilistic forecasts to guide climate change adaptation
policy and to understand model behaviour to guide their
future development, provides ample justification for many
hundred member ensemble experiments. These results are
likely to be particularly relevant at local and regional
scales, where the influence of nonlinearities and modes of
internal variability are often more pronounced, and therefore
have consequences for impacts assessments and adaptation
planning. At larger scales, however, the implications for
quantifying the importance of low probability high impact
events could have implications for mitigation policy.

There is clearly a need to balance resources between
the exploration of model uncertainty, the exploration of
IC uncertainty and the desire to run models containing
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the widest possible range of processes at the highest
feasible resolution given current computational facilities.
These results imply that large ensembles of lower resolution,
lower complexity GCMs, have the potential to be more
informative for certain questions than small ensembles of
high resolution, high complexity models. High complexity,
high resolution models undoubtedly have benefits for some
questions relating to both model development and their use
as ‘laboratories’ (Cookson 2008) for understanding specific
aspects of the climate system. But if the ensembles are
too small to reliably quantify the changing climate within
the model, they must also be considered inadequate for
providing information about real-world probabilities; an
aspect important both for providing climate services (WMO
2011) and for understanding many aspects of the system.
The balance in computational resource allocation therefore
depends on the aim of the ensemble experiment. These
results suggest that existing judgements about the relative
importance of different sources of uncertainty are founded
on ensemble experiments which are unlikely to accurately
reflect at least one of those sources, namely initial conditions,
and are therefore unreliable as a basis for ensemble design.
Finally, reliance on the kairodic assumption risks providing
misleading probabilities for both science and policy, and,
since complex models could feasibly show similar behaviour
to the idealized model investigated herein, without larger IC
ensembles model experiments cannot be assumed to reliably
quantify the details of modelled climate under climate change.
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