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Abstract In recent years several methodologies have been developed to combine
and interpret ensembles of climate models with the aim of quantifying uncertainties
in climate projections. Constrained climate model forecasts have been generated by
combining various choices of metrics used to weight individual ensemble members,
with diverse approaches to sampling the ensemble. The forecasts obtained are often
significantly different, even when based on the same model output .

Therefore, a climate model forecast classification system can serve two roles: to
provide a way for forecast producers to self-classify their forecasts; and to provide
information on the methodological assumptions underlying the forecast generation
and its uncertainty when forecasts are used for impacts studies.

In this review we propose a possible classification system based on choices of
metrics and sampling strategies. We illustrate the impact of some of the possible
choices in the uncertainty quantification of large scale projections of temperature
and precipitation changes, and briefly discuss possible connections between climate
forecast uncertainty quantification and decision making approaches in the climate
change context.
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1 Introduction

A number of recent reviews have examined the use of ensembles of climate models
as a measure of uncertainty in climate forecasting 1. Most conclude that inter-
preting the distribution of models in terms of the probability that the real world
response will lie in a given interval is problematic, because it is unclear to what
extent these ensembles have been designed, and can be expected, to span the range
of possible behavior of the climate system [65,30,29,31]. Numerous studies have
attempted to use climate observations explicitly to constrain climate forecasts, in
the hope of providing more robust and reproducible estimates of forecast uncer-
tainty. However, the results of these studies are very difficult to compare, because
as well as using different models, ensemble designs and observational constraints,
they often rely on fundamentally different assumptions regarding the meaning of
uncertainty in a climate forecast and the status of climate model output. These
assumptions, which are often obscure to forecast users, have a first-order impact
on estimates of forecast uncertainty.

In this review, we propose a classification system based on two broad distinc-
tions that relate various recent studies: differences between methods used to assign
a likelihood or goodness-of-fit statistic to individual ensemble members, and dif-
ferences in the methods use to sample the climate models ensemble in order to
generate the forecast. In section 2 we present a historical overview of the differ-
ent approaches that have attempted to quantify forecast uncertainty. We then
describe and categorize the metrics used to assign a likelihood to individual en-
semble members in section 3, and the sampling methods to generate the forecast
in section 4. Section 5 shows an example illustrating the influence of metric and
sampling strategy on the forecast uncertainty quantification. Finally, in section 6
we discuss the utility of a forecast classification system for forecast users, focusing
on the relationship between the approach chosen to interpret the climate ensem-
ble information and the formal decision analysis method adopted by the decision
maker.

2 Overview

Some of the earliest studies attempting to quantify uncertainty in climate forecasts
emerged from the detection and attribution literature of the 1990s, notably the
optimal fingerprinting approach of references [16,17,56,18]. In [36,3] the authors
observed that optimal fingerprinting could be cast as a linear regression problem in
which it is assumed that general circulation models (GCMs) simulate the space-
time patterns of the climate response to various external drivers correctly, and
observations are used to estimate the magnitude of that response. It was argued
that while it is acceptable to assume that spatio-temporal patterns of response are
independent of the response amplitude for large-scale surface temperature changes,
this is not valid in general, in particular for changes in atmospheric circulation or
precipitation, or for abrupt changes in forcing over the period of interest [2].

1 We use the term ’forecast’ as an estimation of future events, including raw and post
processed climate model output, which in the case of decadal or longer time scales is conditioned
on future emission scenarios .
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Towards a typology for constrained climate model forecasts 3

Optimal fingerprinting can be thought of as equivalent to generating a large
“pseudo-ensemble” simply by taking the mean space-time pattern of response to
a given external forcing as simulated by a small ensemble and scaling it up and
down by an arbitrary parameter representing uncertainty in the response mag-
nitude. The goodness-of-fit between individual members of this pseudo-ensemble
are then evaluated with some kind of weighted sum of squares, with the expected
model-data differences due to internal climate variability, observation error and
(in some studies) model pattern uncertainty providing the weights or metric [1,
20]. For example, the range of warming attributable to anthropogenic greenhouse
gas increases over the past 50 years, evaluated across the members of this pseudo-
ensemble that fit the data better than would be expected by chance in, say, 90% of
cases, provides a confidence interval on this quantity. This approach is the primary
information source for attribution statements in the IPCC Assessments [21,22].

Applying the same scaling factors to model-simulated responses to future forc-
ing provides a method for deriving confidence intervals on future climate change
[2,62,63], this has been referred to as the ASK (Allen-Stott-Kettleborough) ap-
proach. The crucial assumption (which is also implicit in attribution studies) is
that fractional errors in model-simulated responses persist over time [2], so a model
that underestimates the past response to a given forcing by, for example 30%, may
be expected to continue to do so in the future under certain forcing scenarios. A
similar approach, but comparing simple or intermediate-complexity models di-
rectly with observations was taken in [9,10,32,39], hereafter FKM (Forest-Knutti-
Meinshausen). Other authors, such as [15,68], also used this approach of varying
parameters in simple climate models to generate uncertainty ranges or distribu-
tions for climate forecasts, but we highlight FKM since they make a point of
systematic comparison of model simulations with observations. An advantage of
FKM is simplicity: it is straightforward to generate large ensembles with sim-
ple and intermediate-complexity models, varying parameters to generate a broad
range of behavior and then filter these by comparison with observations. The dis-
advantage is that direct comparison of the output of this class of models with
observations is problematic, since their representation of, for example, land and
ocean is inevitably idealized, making it ambiguous what observations they should
be compared against (although similar issues can also be raised with GCMs).

Both ASK and FKM can provide ranges of uncertainty in forecast climate
that, for variables that are poorly constrained by observations, may be much wider
than the range of available GCM simulations in a multi-model ensemble such as
CMIP3 or CMIP5. This was clearly an advantage when very few models were
available, and will continue to be necessary as long as the spread of simulations in
multi-model ensembles is thought to underestimate the full range of uncertainty.
These methods therefore provide a complementary approach to more recent meth-
ods of probabilistic forecasting such as weighted multi-model ensembles [66], or
perturbed-physics ensembles generated by varying model parameters using expert
subjective assessments of their uncertainty [42].

Using Bayesian methods as in [66], in [42,41,59] the perturbed physics ensem-
bles were weighted by their goodness-of-fit to observations, generating distributions
that have an explicit probabilistic interpretation as the degree of belief in the rel-
ative probability of different outcomes in the light of the evidence available. This
is arguably the simplest approach to uncertainty analysis of GCM-based climate
forecasts, and the most natural for non-climate-modelers: given a complex model
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containing uncertain parameters, specify distributions for all these parameters,
sample them to generate an ensemble and constrain with observations. Difficulties
in the implementation of this approach arise because many of the parameters to
which climate forecasts are particularly sensitive do not correspond to any ob-
servable and only really mean something in the context of a particular model or
parametrization, and hence cannot be assigned a standard error as an observable
quantity might be.

The sheer number of under-determined parameters in climate models also
makes it impossible to ensure that, for a given model structure, all important
uncertainties have actually been sampled. This is illustrated graphically in [53,
54], where nominally similar parameters were varied over nominally similar ranges
in two GCMs obtaining a very broad distribution of responses in one case and a
relatively narrow one in the second case.

We conclude this overview by noting that these different approaches have used
very different underlying statistical philosophies. Consistent with the attribution
literature, ASK provides classical (“frequentist”) confidence intervals - that is,
ranges over which models match observations better than a given threshold for
goodness-of-fit. Early implementations of FKM were also frequentist in charac-
ter, while recent implementations [55,39] have used more explicitly Bayesian ap-
proaches, exploring sensitivities to prior distributions but still generally avoiding
any claim to accurate representation of actual subjective prior beliefs. In contrast,
the studies in references [42,41,59] have generally aimed to provide credible inter-
vals, or Bayesian posterior probabilities - ranges within which the forecast quantity
of interest is expected to lie given both the prior expectations of the investigators
and the constraints of the observations. 2

These different approaches should only be expected to give similar results if the
observations provide a very strong constraint on the forecast quantity of interest,
which is typically not the case in the long-term climate forecasting problem. If the
constraints provided by the observations are weak and models tend to cluster near
the best-fitting model (as would be expected if all modeling groups are aiming
to simulate observations as well as possible), these conditions are not satisfied, so
ranges provided by the different approaches are not directly comparable. It would
be helpful to forecast users to be clearer about which approach is being used in
the presentation of uncertainty in any particular study. In what follows we suggest
a classification scheme that could be used to facilitate this task.

3 Metrics of individual model quality

All but the simplest approaches to sampling a range of uncertainty on a climate
model forecast require some measure of the quality of individual climate models or
model-versions. In general, this can be characterized as a distance measure, often
expressed as a weighted sum squared difference between a model simulation x,

2 The distinction between confidence intervals and credible intervals is best summarised
thus: if a forecast quantity lies outside a 90% confidence interval, then an event has occurred
that was estimated at the time of the forecast to have a less than 10% probability of occurrence.
If the forecast quantity lies outside a 90% credible interval, then the forecast quantity is found
to have a value inconsistent (at the 10% level) with our expectations at the time the forecast
was made.
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Towards a typology for constrained climate model forecasts 5

which may be the mean of an initial-condition ensemble, and the corresponding
set of observations y:

r2 = (y − xo)
TC−1(y − xo) , (1)

where C is a measure of the expected difference between model and observations
due to processes that can be treated as random. It typically represents internal
climate variability, but depending on the complexity of the analysis may also
include a representation of observational error, forcing error, irreducible model
error and so on.

Under the assumption that errors are Gaussian and that the distributions of xo

and C are determined by a set of parameters Θ, the model-observations deviance
can be expressed as a likelihood:

L(Θ|y) = 1√
(2π)ndet|C|

exp

(
−r2

2

)
(2)

where n is the rank of C, or the number of independent observations. In the case
of ASK-type regression approaches, Θ is simply the parameters of the regression
model, or undetermined scaling factors to be applied to model-simulated responses
to individual forcing agents, while in perturbed-parameter ensembles, Θ represents
the parameters perturbed in the climate model itself. The interpretation of Θ is
more complicated when structural model uncertainty is present, but for the sake of
unity, we will assume that structural uncertainty can in principle be parameterised.

In a Bayesian analysis, the likelihood L(Θ|y) is simply proportional to the
probability density function of obtaining a simulation xo in the vicinity of y given
the parameters Θ, Pr(xo = y|Θ). Clearly, this tends to become progressively
smaller the higher the dimension of y simply because the probability of the simu-
lation “hitting the target” falls off the higher the dimension of the space considered.
Hence the absolute likelihood of any setting of the parameters Θ depends, even for
a structurally perfect model, on the number of observations used to constrain it,
making the interpretation of absolute likelihoods rather obscure. Hence all studies
rely more-or-less explicitly on the relative likelihood:

L(Θ1|y)
L(Θ0|y)

= exp

(
−r21 − r20

2

)
, (3)

where Θ1 and Θ0 are two sets of parameters (two models or model-versions).
Focussing on relative likelihoods removes the explicit dependence of results on n,
but we are still left with two important practical issues: how many observations
should be used to evaluate the model, and to what extent are they independent?
In principle, all available observations could be incorporated into the likelihood
function, but this has undesirable consequences in practice since all climate models
fail to simulate many observable aspects of the climate system. Hence a näıve
incorporation of all available observations into r2 results in comparing the relative
likelihood of models whose individual likelihoods are vanishingly small. Worse,
because r2 is dominated by its largest individual terms, relative likelihoods are
dominated by the difference between the simulations and those aspects of the
observations that the models simulate least well [42]. This will result in poorly
constrained model variables having a disproportionately greater impact in the
weighting.
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Three approaches have been used in the literature to address this problem.
In ascending order of complexity, they are: M1, metrics restricted to a subset of
observable quantities that, on the basis of the evidence available, the model appears
capable of simulating for at least some settings of the parameters Θ; M2, metrics
in which the individual contributions to r2 from different observation-types are
renormalized by the error in the best available (or a reference) simulation of that
observation-type; and M3, metrics in which the contribution of irreducible model-
data discrepancies are incorporated intoC through an explicit “discrepancy term”.
There is of course another possibility (M0), which is not to use any metric at all
and consider all the ensemble members as equally likely.

In general, the choice of a metric will have a greater impact on results than the
choice of observations or the quality of individual models, so it is imperative to be
clear which type of metric is used in any individual study. Moreover, we should
not expect them to give similar results: in general, relative likelihoods based on
an M1 metric will be larger (closer to unity, meaning the metric has less power in
discriminating between models) than those based on an M2 or M3 metric because
the M1 metric makes use of only a subset of the observations available. This
does not automatically mean that the M2 or M3 metrics are preferable, because
their additional power comes at the price of substantial and generally un-testable
additional assumptions.

3.1 Option M1: restricted metrics

The convention adopted in ensemble climate forecasting based upon climate change
detection and attribution approaches, has been to assess model quality using only
observable quantities that models are capable of simulating directly. For example
in reference [61], model-simulated space-time patterns of response to greenhouse,
anthropogenic aerosol and natural (solar and volcanic) forcing were compared with
observed large-scale temperature changes over the 20th century using a regression
analysis. In this example,Θ contained the unknown scaling factors on the responses
to these three forcing agents. Principal Component Analysis was used to retain
only those spatio-temporal scales of variability for which, after the best-fit Θ had
been obtained, the minimum residual r2min was consistent with the expected resid-
ual due to internal climate variability (which, for large-scale temperature changes,
dominates observation error), based on a standard F -test for residual consistency
[3]. In [10] only three parameters are varied in an intermediate complexity model,
also using principle component analysis to focus on the large-scale response.

The interpretation of relative likelihoods here is straightforward: for these spe-
cific variables (large-scale temperatures changes) the assumption is that there is
a choice of parameters Θ with which the model simulates the real-world warming
response realistically, and the likelihood of Θ1 being that “true” set declines with
δr1 = r21 − r2min. In terms of classical statistical tests, this provides the basis for
a test of the hypothesis that r2min would be this much smaller than r21 if Θ1 is in
fact the “true” parameter-set.

Despite the attraction of being firmly grounded in classical linear regression
and hypothesis testing, the metrics used in ASK and FKM are open to criticism.
First, they make very limited use of the observations available, since few observ-
able quantities satisfy the condition of being statistically indistinguishable from
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Towards a typology for constrained climate model forecasts 7

the best-fitting available climate model simulations. Second, large-scale temper-
ature changes are generally not the most impact-relevant aspects of a climate
forecast. Applying relative likelihoods based on large-scale temperature changes
to constrain forecast changes in other variables requires the strong assumption
that the model-simulated relationship between large-scale temperatures and these
other variables is correct. Alternatively, it could be argued that for impacts stud-
ies, relative likelihoods should include a comparison with observations relevant
to the particular application, such as rainfall and evaporation for hydrological im-
pacts. However, choosing to constrain the uncertainty range using observables that
models cannot skillfully simulate will simply discard many models, potentially re-
sulting in a reduced uncertainty range as a result of the inadequacy of the models
and not a genuine reduction of the uncertainty.

It should be noted that the second criticism does not only apply to metrics
restricted to large-scale temperature changes: in general, relative likelihoods based
on more complex metrics will be dominated by model-data differences in a small
number of observable variables and hence require an assumption that models that
simulate the observations realistically in these variables are also more likely to be
realistic in other respects, although the use of an explicit discrepancy term can
alleviate this problem. The key advantage of restricted metrics, however, is that
they are sufficiently simple that all such assumptions are out in the open.

3.2 Option M2: renormalized metrics

If more observable quantities are included in the definition of the r2 goodness-of-fit
statistic than the best-fitting models are capable of simulating (for example, by
including small-scale temperature changes, or variables other than temperature
that models simulate less well), then relative likelihoods tend to be dominated by
these poorly simulated quantities. While this is clearly undesirable, there may still
be information to be extracted from relative goodness-of-fit in these quantities:
for example, the best models may be capable of simulating them realistically but
they are excluded from a restricted metric simply because we lack an adequate
representation of expected model-data differences in these quantities.

A simple approach to incorporating more observations into the r2 statistic
than would be allowed under a restricted metric is simply to renormalize model-
data differences in subsets of the observable quantities (putting temperatures in
one subset, for example, and precipitation in another) by the average error in
either the best-fit or some reference model. This means that equal weight is given,
by construction, to relative errors in different subsets of the observations. This
approach, used in [45,60], allows more observations to be used but lacks a clear
methodological justification, so it should be regarded at best as an ad hoc method
to be used until a more complete understanding of expected model-data differences
is available.

3.3 Option M3: explicit discrepancy terms

The most sophisticated approach to incorporating a wide variety of observations
into measures of model quality is the “discrepancy term” used in [41,59,49,7] to

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
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estimate likelihoods of individual models in a perturbed physics ensemble. Rather
than excluding observable quantities that the best-fitting models are unable to
simulate, as with M1, or simply renormalizing model-data differences to down-
weight these terms as in M2, the discrepancy term in M3 attempts to include all
the sources of model-data differences into C, including a representation of “irre-
ducible” errors that are common to all members of the ensemble. The result is to
inflate the expected covariance in observables that the models are known to sim-
ulate poorly, which has the effect of reducing the weight given to these quantities
in the overall measure of goodness-of-fit.

Specification of the discrepancy term presents a challenge in practice. To date,
the approach taken to estimating the discrepancy term has been to use the statis-
tics of an independent ensemble. For example, in deriving a discrepancy term for
the analysis of a perturbed-physics ensemble, [59] use the CMIP3 experiment. [12]
show that this approach is justified subject to rather limited assumptions about
the properties of this second ensemble. One assumption that is required, however,
known as “second-order exchangeability”, is that errors are equally probable in any
two members of the multi-model ensemble. However, it is generally expected that
some models will be substantially more realistic than others (through higher reso-
lution, more advanced representation of physical processes and so on). In practice,
therefore, the set of second-order- exchangeable models of similar expected quality
is likely to be rather small. Use of a multi-model ensemble to estimate the discrep-
ancy term incorporates information about model disagreement into the analysis,
allowing less weight to be given to model-observation disagreement in variables
on which model disagree among themselves. The discrepancy term is also used to
allow explicitly for uncertainty in the forecast arising from errors common to all
members of the perturbed-physics ensemble.

It is worth emphasizing that explicit discrepancy terms play two roles in an
ensemble climate forecast: one is allowing for structural uncertainty in the simula-
tion of the observable quantities that are used to constrain the forecast, while the
second is allowing for structural uncertainty in the forecast itself. Although they
are generally justified together, these roles are not necessarily inseparable.

4 Sampling in perturbed physics and multi-model ensembles

Independent of the climate model ensemble generation technique and the method
used to assign a quality measure to individual members of the ensemble , there are
different sampling methods to generate the climate forecast. In general, the theo-
retical justification of certain metrics has typically been associated with particular
approaches to ensemble sampling, but the theoretical constraints are sufficiently
weak that an equally coherent justification could be given for any combination.
Hence it is useful to distinguish ensemble sampling approaches from model metrics.

4.1 Option S0: Unrestricted ensembles

The most widely-used approach for the treatment of uncertainty in climate fore-
casts is the multi-model ensemble or ensemble-of-opportunity, typified by model
intercomparison studies in which simulations from multiple modeling groups, are
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Towards a typology for constrained climate model forecasts 9

contributed to a central repository and the spread of the ensemble is interpreted as
a measure of forecast uncertainty. These include for instance the CMIP3 [38] and
CMIP5 [64] global modeling intercomparison projects, as well as regional down-
scaling experiments such as CORDEX [25]. Ensembles-of-opportunity could in
principle be combined with any of the three metrics described above. In practice,
however, the majority of studies that use formal metrics of model quality also use
a more systematic approach to ensemble sampling. The ensemble-of-opportunity
approach has been criticised for producing forecast spreads that are potentially
misleadingly narrow if all modelling groups are individually tuning their models
aiming to produce a best-fit model [26].

An alternative approach to treat uncertainty in the forecasts consist of con-
structing a perturbed physics ensemble. In this case, as shown in [60], it is possible
to generate a very broad range of behaviors. Therefore, this type of unrestricted
ensembles might in principle produce a misleadingly wide range of uncertainty,
unless formal methods are used to constrain the ensemble.

A specific issue with the interpretation of ensembles-of-opportunity is whether
the models in such an ensemble represent approximations to the real world each
subject to independent errors, or whether the real world should be regarded as
interchangeable with a member of the ensemble [5]. This has practical implica-
tions, since the “truth-plus-error” interpretation implies that as the ensemble size
increases, the ensemble mean should converge steadily closer to the truth, as the
impact of independent errors cancel out, whereas the “exchangeable” interpre-
tation implies no such convergence. On climate timescales model errors cannot
be assumed to be mutually independent, so the mean of a large ensemble is no
more likely to be closer to the truth than the mean of a small ensemble sim-
ply by virtue of the ensemble size. Hence, with some exceptions [66], analyses of
ensembles-of-opportunity have tended to treat them as if ensemble members were
interchangeable with the real world (e.g. [46]).

The two interpretations discussed above assume that climate models are ad-
equate representations of the Earth climate system, and model inadequacies rep-
resent small perturbations around the true system. There is of course a third
possibility, whereby the climate models structural uncertainties are severe enough
to invalidate their use as climate forecasting tools, particularly at spatial and
temporal scales relevant for impacts studies (see for example [48]). In that case,
uncertainties estimated using any of the approaches discussed here do not neces-
sarily represent the true uncertainty range, and forecast users should consider this
possibility particularly when using the forecast for decision support.

4.2 Option S1: Range-over-threshold approaches

The simplest generalisation of measuring forecast uncertainty as the spread of the
climate model ensemble, be it a multi-model or a perturbed physics ensemble, is
to provide forecast ranges spanned by models that satisfy some formal criterion
of goodness-of-fit to observations. This is the approach traditionally taken in the
detection and attribution literature, and it produces classical confidence intervals,
not formal probability statements. In essence, given the ensemble of models with
a very broad range of behaviour, a subset is selected that fit the data as well
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10 A. Lopez, E. B. Suckling, F. E. L. Otto, A. Lorenz, D. Rowlands, M. Allen

or better than would be expected in, say, 90% of cases due to known sources of
model-data difference.

The advantage of range-over-threshold approaches is transparency and testabil-
ity. The hypothesis, that no model can be generated that yields a forecast outside
a given range while simultaneously satisfying a given criterion of goodness-of-fit
to observations, is clearly testable and does not depend on how models or model-
versions were sampled in the first place. This is correct provided that the initial
ensemble is broad enough and densely sampled enough to span the range consistent
with relevant observations.

4.3 Option S2: Bayesian approaches

The simplest approach to generating an explicit probabilistic climate forecast is
the Bayesian weighted ensemble. Under this approach, individual members of the
climate model ensemble, usually a perturbed physics ensemble but can include
sampling of model structure uncertainty as well, are weighted by their likelihood
with respect to observations, and a posterior distribution for forecast quantities
of interest is derived using Bayes theorem. In this framework, the posterior dis-
tribution provides credible intervals, and represents the investigators’ degrees of
belief regarding the relative probability of different forecast outcomes in the light
of these observations.

A limitation of this approach is that, when the constraints provided by the
observations are weak (meaning that the likelihood function is only weakly depen-
dent on the parameters), results can be highly sensitive to the prior specification
of parameters. For example, [11] noted that different prior specifications which
had all been used in the literature resulted in a range of estimates of the upper
bound on climate sensitivity spanning a factor of three or more.

One response, is to argue that certain priors reflect investigators’ beliefs better
than others, and to explore sensitivity to results over “reasonable” choices of prior
[58,4]. Determining what is deemed reasonable, however, is not straightforward,
particularly when a prior has to be specified over a model parameter, such as a
diffusivity, whose physical interpretation may itself be ambiguous.

An option for combining the testability and reproducibility of range-over-
threshold approaches with the probabilistic interpretation of the conventional
Bayesian approach is to use ‘objective’, or rule-based, priors to specify parameter
distributions. For example, [2,62,13,11] sample parameters to give approximately
uniform prior predictive distributions in the quantities used to constrain the fore-
cast. When the constraints are approximately Gaussian and independent, as is the
case in the examples considered, this is very close to the use of a Jeffreys prior [23,
24,50,37] to specify parameter distributions.

5 Implications for uncertainty quantification

In this section, we illustrate the effect of the choice of sampling-metric combina-
tions on the quantification of the forecast uncertainty. For our illustration we use
the model data and an example of a metric M1 described in detail in [51]. In this
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work the metric evaluates the distance between the simulated and observed large
scale spatio-temporal temperature anomalies, over the period 1961-2010.

Figure 1 shows how the unceratinty range of projections of temperature and
precipitation changes depends on the combination of M1 with two sampling strate-
gies (S0 and S1) , when applied to two climate model ensembles: an ensemble of
opportunity (CMIP3) and a perturbed physics ensemble (climateprecition.net).
Projections for precipitation vs. temperature changes are shown for the global
mean and three sub-continental regions. As expected, M1 based only on large
scale spatio-temporal temperature anomalies, works well at constraining the global
mean warming projections since the range of temperatures (horizontal axis) spanned
by the unrestricted climateprediction.net ensemble (colored crosses, S0-M0) is
much wider than the range-over-threshold ensemble (grey diamonds, S1-M1) in
the top right panel of the figure. However, using a metric based on the models’
ability to simulate large scale spatio-temporal temperature patterns is not equally
effective in all regions. For instance, for the climateprediction.net ensemble, the
range-over-threshold for Southern Asia and Western North America temperature
projections is better constrained than for Northern Europe. This can be explained
by the fact that for climateprediction.net models there is a strong relationship be-
tween global and regional warming projections for the first two regions while the
relationship is weaker for the third region(not shown). In the case of the CMIP3
unrestricted ensemble (circles, S0-M0), the uncertainty range is not reduced when
applying the metric M1 (solid grey circles, S1-M1), possibly because this multi
model ensemble is, by construction, tuned with the observations used to build
the metric M1 [52], so imposing this constraint does not add new information to
costraint the uncertainty range.

The figure also illustrates that the metric M1 is not very effective at constrain-
ing projections for precipitation changes (vertical axis) for the regions shown. In
these modeling experiments, the model projections for large scale temperature
changes used to compute M1 do not have a strong relationship with simulated
changes in precipitation for those particular regions(not shown), therefore model
performance in large-scale temperature changes does not provide useful informa-
tion to constrain the uncertainty in projections on precipitation changes.

In the context of impacts studies, it is important to remark that a metric that
evaluates warming patterns does not provide information about absolute errors and
biases in models. In other words, even though it might make sense to constrain
the range of uncertainty in projections using an observable that can be adequately
simulated by at least some of the models (warming patterns in this case), that does
not imply that models which pass the test according to one metric are realistic at
simulating more relevant quantities for impacts studies, such as absolute values of
variables (as opposed to their anomalies).

6 Discussion and Conclusion

The simple example above illustrates clearly that the choice of ensemble sampling
strategy and goodness-of-fit metric has a strong influence on the forecast uncer-
tainty range. As it is well known, the uncertainty in projections for unrestricted
ensembles is significantly different depending on the modeling strategy (CMIP3
vs climateprediction.net). When observations are used to constrain uncertainty
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ranges, the result depends not only on which observations (and what temporal
and spatial scales) are used to construct the metric, but also on the relationships
between that information and the forecasted variables. In our example, comparison
with observations is restricted to large scale temperature warming patterns which
in principle the best models in the ensemble can simulate realistically. Even in this
case we see that the M1 metric used to quantify model quality can constrain the
uncertainty range in global mean temperature changes, but it fails to constrain it
in precipitation changes.

The proliferation of approaches to uncertainty analysis of climate forecasts
is clearly unsatisfactory from the perspective of forecasts users. When confronted
with a new forecast with a nominally smaller range of uncertainty than some alter-
native, it would take considerable insight to work out if the difference results from
arbitrary changes in metric, or ensemble sampling, or from new information that
reduces the uncertainty in the forecast. While it is undesirable to impose a common
approach, it may be useful for studies to attempt some form of self-classification.
The typology proposed in this review is intended to provide a starting point to this
end, with the expectation that this classification will evolve in time to incorporate
perhaps new approaches applicable to other types of ensembles generated using
for instance pattern scaling [40,67] or stochastic parametrisations [44].

Such a classification could serve as a guide for those attempting to use climate
forecasts for impact studies and formal decision analysis in the climate change
context. Especially for the latter, the assumptions about the decision criterion
employed in the analysis are naturally related to the assumptions underlying the
generation of the climate forecast. Scenario analysis, robust control ([35]), or info-
gap (e.g. [14]) frameworks do not rely on probabilistic information or even ranges,
but focus on the impacts of decision options and system response under a range
of possible futures. However, the applicability of these types of analysis to future
decisions rests on a sufficiently comprehensive coverage of the space of possible
future climate states.

Climate ensembles providing a range of possible futures can be utilised in deci-
sion analysis using the MaxiMin (pessimistic), MaxiMax (optimistic) or Hurwicz
(mixture) criteria [33], which only rely on information about the worst and/or best
possible outcomes. The expected utility decision criterion (e.g. see [8]) is widely
used in cost-benefit (e.g. [43]), cost-risk (e.g. [57]), and cost-efficiency (e.g. [19])
analyses in the climate change context as the current standard of normative de-
cision theory. It requires information about the climate forecasts in the form of
probability density functions (pdfs), and naturally relates to Bayesian ensemble
sampling approaches. However, among many other shortcomings, the expected
utility criterion is unable to represent a situation in which the decision maker is
ambiguous about the exact pdfs representing (climate) uncertainty (see e.g. [34]).
One possible solution to this shortcoming is the use of imprecise probabilities (e.g.
[27], [28]), where climate information would be given not as a single pdf, but as a
set of possible pdfs.

We close this discussion by remarking that, when considering climate forecasts
for impacts studies, it is important to keep in mind that, as discussed in section
4 the possible range of climate changes might not be fully explored if the analysis
relies solely on climate models’ projections. Changes other that the ones currently
projected by climate models are plausible, particularly at impacts relevant spa-
tial scales. Therefore decision makers should use a variety of scenarios for their
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planning, and not restrict their analysis exclusively to model projected ranges of
uncertainties [47,6].
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Fig. 1 Illustration of metric-sampling combinations. Projections for precipitation vs. temper-
ature changes are shown for the global mean and three sub-continental regions as indicated
in the panels. CMIP3 ensemble of opportunity: S0-M0 (all circles), S1-M1 (solid grey circles).
Climateprediction.net perturbed physics ensemble: S0-M0 (colored crosses), S1-M1 (grey di-
amonds). The metric M1 evaluates the goodness of fit of large scale spatial and temporal
temperature anomalies over 1961-2010. For the PPE the color of the crosses corresponds to
the number of parameters that have been perturbed in each model version, from red indicating
no perturbed parameter to dark blue indicating 19 parameters perturbed simultaneously.
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