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1 Verifying the linearity assumption

The pattern scaling approach states that if T (x, t) is the actual pattern of
change in the variable T at position x and year t simulated by a full GCM,
an approximate pattern of change T ∗(x, t) for this variable can be obtained in
terms of a spatial pattern P (x) and the global mean change T̂ according to

T ∗(x, t) = P (x) T̂ (t), (1)

where

P (x) =

∑
t T (x, t)T̂ (t)∑

t T̂
2(t)

, (2)

is obtained as the spatial pattern that minimizes the distance
∑

t[T (x, t) −
T ∗(x, t)]2 between T and T ∗ .

This approximation encapsulates the assumption that the spatial pattern of
change P (x) is constant in time, and the only effect of the transient forcing will
be to scale the pattern up or down following the trajectory of the global mean
temperature change. Hence “pattern scaling”. The generalization of the above
equation to include monthly or seasonal dependence is straightforward, the
temperature change field T (x, t) becomes T (x, i, t) with i labeling a month or
season in year t, and consequently there is a pattern P (x, i) for every possible
value of i .

In this work the pattern P (x) is derived using the I.C. ensemble mean, to
improve the results with respect to scaling from an individual simulation [2].
The temperature change fields T (x, t) and global mean temperature change
T̂ (t) in equation (2) are those of the ensemble mean (represented by the thick
black line in figure 1). The pattern derived in this way is named PEM (x), or
PEM (x, i) if the pattern is computed for each month or season.
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If the linearity assumption is satisfied, the pattern derived using the en-
semble mean time series, PEM (x), should be equivalent to a pattern obtained
by considering the temperature fields of all the model runs when their global
mean temperature changes coincide with each other, i.e., when they are all
equal to some value TG (which can of course take any arbitrary value). In
order to test this assertion, and in analogy with equation (2), a pattern PTG

is defined for any given global mean temperature change TG as follows

PTG
(x) =

∑N
m=1 Tm(x)TG

m∑N
m=1(T

G
m)2

, (3)

where Tm(x) is the temperature change field of model m when its own annual
global mean temperature change is TG

m , and N is the number of temperature
fields. Notice that the number of temperature change fields is not necessarily
the same as the number of model runs in the ensemble under consideration,
since a model global mean temperature can be equal, or close, to TG more than
once due inter annual variability. In principle, we should set TG

m = TG and the

expression in equation (3) reduces to PTG
(x) =

∑N

m=1
Tm(x)

NTG
. In practice, due

to the discreteness of the time series, TG
m is not strictly equal to TG and the

sum in equation (3) is over the model temperature fields Tm(x) every time
its global mean temperature change is within a range of TG that has to be
predefined. Two cases are analyzed here:

Case I: choosing all TG
ms that are closer to TG than the ensemble mean

global mean temperatures right below and right above TG ,

Case II: choosing all TG
ms that fall within a fixed interval around TG, TG ±

0.01.

The generalization of equation (3) to a monthly or seasonal pattern is again
straightforward, the temperature change field Tm(x) becomes Tm(x, i) with i
labeling the month or season of the year when TG

m = TG, and consequently
the pattern becomes PTG

(x, i).

It is clear that if the temperature field labeled by m satisfies the pattern
scaling relationship defined in equation (1) for the pattern derived from the
I.C. ensemble mean, i.e., if Tm(x) = PEM (x) TG

m , then PTG
(x) = PEM (x). In

other words, if the temperature field of any given model scales linearly with
the global mean temperature changes, then the pattern obtained from the en-
semble mean must be identical to the pattern obtained using the temperature
change fields of the whole ensemble at any fixed global mean temperature
change TG. The three TGs analyzed in what follows, TG = 1.5◦, 2.0◦ and 2.5◦,
are indicated with horizontal colored lines in figure 1.

To compare the two patterns PTG and PEM an estimate of the sampling
noise must be provided. This is estimated by recalculating the value of each
pattern by re sampling the corresponding ensemble as follows [1]:

Method I (leave one out): leaving one model out and computing the pattern
using the remaining ensemble. In this case the number of samples is identical
to the size of the ensemble minus one.
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Method II (bootstrapping) : by re sampling the ensemble 1000 times with
replacement.

Figure 2 shows the results for PEM (x, i) (black cross) and PTG(x, i) (colored
crosses) when x corresponds to Southern Europe and i corresponds to the
annual average, and to two seasonal averages: boreal summer (JJA) and winter
(DJF). Here PTG

(x, i) is defined as in Case I. The error bars represent the
90% range of the re sampled ensemble using the methods I and II described
above. For method I the confidence intervals are narrower: the ensemble mean
changes slightly from sample to sample (only one model is left out at time
and the ensemble size is always the same), therefore the estimated patterns
are close to each other. For method II , the ensemble is potentially changing
significantly from sample to sample (there will be repeated model runs in each
re sampled ensemble), thus the variability in the estimated patterns is larger
than in the previous case. In this case, if re sampling with replacement is
interpreted as a proxy for sampling a very large I.C. ensemble, the error bars
represent an estimate of the natural variability sampling uncertainty at the
chosen confidence level.

As illustrated in figures 3 and 4 for Central North America and Southern
South America, the results are region and time average period dependent.
In all cases, PEM (x) is inconsistent with PTG

(x) when the sampling error
is estimated using the leave one out procedure (method I). In the case of
bootstrapping (method II), whether or not the confidence intervals overlap
depend on the region and the temporal average of the pattern. For instance for
Southern South America in the summer (4) the non linearity is only marginally
larger than the internal variability uncertainty for TG = 1.5◦.

Table 1 lists the difference between the two patterns at each spatial loca-
tion x, (PTG

(x) − PEM (x)), measured in terms of the standard deviation of
the ensemble of patterns PEM (x) for methods I and II, and when (PTG(x)
is calculated as in Case I. For method I, the difference between PTG

(x) and
PEM (x) ranges between 3 and more than 40 standard deviations of the en-
semble of patterns PEM (x). When using bootstrapping the differences between
PTG(x and PEM (x)) are reduced, but for instance for Southern Europe in the
summer still range between 1 and 5 standard deviations.

Figures 5, 6 and 7 are similar to Figures 2, 3 and 4 respectively, but when
computing the patterns PTG as in Case II described above, i.e., using all the
temperature change fields Tm(x) for the models m whose global mean temper-
ature TG

m falls within the interval TG±0.01. As expected, the values of PTG
(x)

depend on the interval chosen. The size of the ensembles around each tem-
perature threshold TG is smaller than in Case I ( 21, 11, and 18 versus 59, 38,
and 40 for TG = 1.5◦, 2.0◦ and 2.5◦ respectively), increasing the sampling
uncertainty as illustrated by the larger confidence intervals in this case.

Table 2 shows that the percentage difference between PTG
(x) and PEM (x)

not only varies with region, season and TG, but also with the choice of interval
around TG. While the nonlinearity is smaller than about 10% for Southern
Europe for all time intervals and values of TG, it can be much larger for Cen-
tral North America where it reaches 27% in Case II in the winter. Whether
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or not one can consider that the linearity assumption is violated in this case
will presumably depend on these margin of errors being tolerable (or not)
for the particular application.Presumably at smaller spatial scales, differences
between PTG(x) and PEM (x) will be larger due to non the linearity of the re-
sponse at local scales, however confidence intervals might also increase, making
it difficult to estimate how the results will be in those more impacts relevant
cases.

2 Sensitivity of the results to the choice of baseline model and
region

This section presents results for the risk of overshooting a temperature change
threshold for different regions and choice of baseline model. The goal is to
show that the inconsistency between the estimated risk of overshooting the
threshold obtained from the MR and the PSR ensembles is not an artifact of
the choice of baseline model M , nor particular to a region.

Figure 8 is analogous to figure 1 of the paper but for Central North Amer-
ica. The top and middle panels show the I.C. (MR) and the pattern scaled
( PSR) ensembles’ projections for boreal summer temperature change as a
function of time. The MR projections are continuous time series for the period
1900-2079, but are plotted here as overlapping thirty years periods to facili-
tate the comparison with the PSR ensemble. The baseline anomalies of model
M are shown in the first thirty year period for reference (green line). It is
clear that, by construction, the year-to-year variability of the PSR ensemble
follows the variability of model M anomalies, independently of the time slice
considered (i.e., independently of s). This explains why the actual model M
projections (blue line in middle panel) are not always contained within the
range of the PSR ensemble.

The bottom panel of the figure shows the the risk of a heat wave occur-
rence, estimated as the fraction of model runs that overcome a given threshold
(3.0◦ for Central North America for instance). For clarity, only decadal and
thirty year means are shown in the figure. In both cases the results from the
PSR ensemble do not coincide in general with the MR ensemble. For decadal
averages , the results also vary depending on which time slice is used to cal-
culate the pattern. For instance the risk of overshooting the threshold in the
2020-2029s is estimated to be 44%, 27% or 33% for Central North America by
the PSR ensemble, depending on whether the spatial pattern Ps is calculated
using the thirty years periods 2000-2029,2010-2039 or 2020-2049. The true risk
estimated by the MR ensemble is 33% .

How significant are the differences between the true and the pattern scaling
estimated risks in the context of sampling variability is not easy to estimate
in general. However, in the context of the perfect model scenario, given that
the IC ensemble has 32 members, any error smaller than about 3% is not
significant, since the smallest possible frequency is 1/32 = 0.03. In this sense,



Supplementary Information - Pattern scaling for decision support 5

for thirty year means the two ensembles (MR and PSR) are indistinguishable,
with errors smaller than 1% for Central North America.

Figures 9 and 10 illustrate the results for the same two regions but a
different random choice of the model used as baseline (model M). As expected,
the two ensembles are not consistent with each other either, showing that this
is not an artifact of the choice of baseline.

Note in passing that the inconsistencies signaled above will occur indepen-
dently of whether or not the linear assumption evaluated in section 1 is correct.
If the linear assumption is violated, then pattern scaling should not be used.
But even if the linearity assumption was valid, the method described above
produces inconsistent results for inter annual and inter decadal variability for
the regions analised.

3 Sensitivity of the results to the sampling of inter annual
variability

As discussed in section 3 of the paper, to obtain realizations of climate change
superimposed to year-to-year variability, the spatial pattern of change is added
to the observed time series of anomalies from climatology over the baseline
period Tbaseline(x, im, y), to yield the pattern scaled projections

T ∗(x, im, s, y) = Ps(x, im) T̃ (y) + Tbaseline(x, im, y) (4)

where s denotes the time slice, y runs over the years within that time slice, and
im labels month or seasons. In the previous section, Tbaseline was represented
by the baseline time series of a randomly chosen model M . Here, the effect of
considering random permutations of this time series is explored; the underlying
idea being that a better sampling of the internal variability can be achieved
by randomly sampling segments of the baseline time series of anomalies.

Figures 11 and 12 show the results when employing the same baseline model
as in figures 1 in the paper and 8 in this supplement, but constructing the PSR
ensemble using sixty randomly permuted versions of the baseline time series.
The permuted time series are obtained by randomly permuting each month
separately.

The figures show that the pattern scaled ensembles increase their ranges,
and for both regions the time series of the model chosen for the baseline is
included within the range of the ensemble. For decadal averages, the results
also vary depending on which time slice is used to calculate the pattern, but
the differences are smaller than previously, becoming indistinguishable from
the minimum possible frequency difference, 1/32.

This is to be expected; the large discrepancies between decades in the ex-
amples discussed in the previous section and in the paper, were due to the fact
that the same fixed baseline was added to the thirty year changes computed
as Ps(x, im) T̃ (y). When the baseline time series is randomly permuted, this
problem is minimized.
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For instance, as shown in figure 11 for Southern Europe, the risk of over-
shooting the threshold in the 2020-2029s is estimated to be 37%, 38% or 41%
by the PSR ensemble, and the result depends on whether the spatial pat-
tern Ps is calculated using the thirty years periods 2000-2029, 2010-2039 or
2020-2049. The true risk estimated by the MR ensemble is 39% . In the case of
Central North America, figure 12, the PSR estimates are closer together (33%,
30% or 34%) and to the true value 33%. Errors for thirty year means remain
comparable to the ones obtained when taking a fixed baseline. They range
between −4% and 5% for both Southern Europe and Central North America.
This is consistent with the fact that exploring the variability within each time
slice can not change potential errors in the averages over the entire time slices.
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Table 1 Estimation of errors induced by the linearity assumption: ratio between (PTG
(x)−

PEM (x)) and the standard deviation of the PEM (x) ensemble obtained using methods I
and II, for annual, and boreal winter and summer patterns. For each of the regions shown
in figures 2 to 4 the rows from top to bottom correspond to TG = 1.5◦, 2.0◦ and 2.5◦ , and
the intervals around these temperatures are chosen as in case I.

Method I Method II
Region annual DJF JJA annual DJF JJA
Central 20.4 23.6 12.0 3.8 4.4 2.2
North 3.6 14.2 -14.2 0.7 2.6 -2.6

America -4.0 -15.6 -2.9 -0.8 -2.9 -0.5
Southern 26.0 42.6 17.2 4.8 7.9 3.0

South 10.9 -20.4 22.0 2.0 -3.8 4.1
America 2.8 -20.2 30.4 0.5 -3.8 5.5
Southern -8.6 -11.4 10.1 -1.6 -2.1 1.9
Europe 6.4 23.8 28.8 1.2 4.4 5.3

6.7 14.1 6.3 1.2 2.6 1.2

Table 2 Estimation of errors induced by the linearity assumption: percentage difference
(PTG

(x) − PEM (x))/PEM (x) when defining PTG
(x) as in case I (first three columns) and

case II (last three columns) , and using method II to estimate the confidence intervals. For
each of the regions, the rows from top to bottom correspond to TG = 1.5◦, 2.0◦ and 2.5◦ .

case I case II
Region annual DJF JJA annual DJF JJA
Central 7.6 10.3 3.1 11.1 27.0 0.3
North 1.6 5.5 -3.8 14.3 23.2 6.4

America -2.1 - 6.7 -0.8 -4.3 -14.7 0
Southern 4.5 5.7 3.8 11.8 10.5 16.1

South 2.2 -2.7 4.9 2.0 1.0 -5.2
America 0.9 -2.7 6.6 3.9 -2.0 11.3
Southern -2.4 -2.6 1.4 0.3 -2.5 3.6
Europe 1.4 6.3 4.4 0 -3.5 7.7

1.5 3.5 1.0 -3.8 -7.7 0
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Fig. 1 Time series of GMT anomalies for the 32 member I.C. ensemble (colored thin lines).
The thick black line is the ensemble mean. The blue, green and red thick horizontal lines
indicate TG = 1.5◦, 2.0◦ and 2.5◦. The linearity assumption is verified if the pattern obtained
using the ensemble mean times series, PEM (x) , is identical to the patterns obtained using
the models’ temperature fields across the horizontal thick colored lines, PTG
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Fig. 2 Patterns PEM and PTG
for Southern Europe. Black symbols correspond to PEM and

colored symbols correspond to three different values of PTG
for TG = 1.5◦ (blue), 2◦ (green)

and 2.5◦ (red). Method I and method II correspond to two different ways of estimating
the error bars (see text), 90% confidence intervals are plotted. The top, middle and bottom
panels show annual, JJA and DJF patterns respectively.
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Fig. 3 Same as figure 2 but for Central North America.



Supplementary Information - Pattern scaling for decision support 11

method I method II
0.81

0.82

0.83

0.84

0.85

0.86

0.87

0.88

0.89

0.9

Anual , 
Southern South America

R
eg

io
na

l w
ar

m
in

g 
pe

r 
G

M
T

 0 C

method I method II
0.78

0.8

0.82

0.84

0.86

0.88

0.9

0.92

JJA  season, 
Southern South America

R
eg

io
na

l w
ar

m
in

g 
pe

r 
G

M
T

 0 C

method I method II
0.74

0.76

0.78

0.8

0.82

0.84

0.86

0.88

0.9

DJF  season, 
Southern South America

R
eg

io
na

l w
ar

m
in

g 
pe

r 
G

M
T

 0 C

Fig. 4 Same as figure 2 but for Southern South America.
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Fig. 5 Southern Europe. Same as figure 2 but for PTG
patterns computed using fixed

threshold TG ± 0.01◦.
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Fig. 6 Central North America. Same as figure 3 but for PTG
patterns computed using fixed

threshold TG ± 0.01◦.
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Fig. 7 Southern South America. Same as figure 4 but for PTG
patterns computed using

fixed threshold TG ± 0.01◦.
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Fig. 8 Central North America projections for summer warming and risks of heat waves. Top
and middle panels: The I.C. (top) and PSR (middle) ensembles’ projections for summer
temperature change are plotted as a function of time. The thick horizontal line indicates the
2.3◦ threshold. In these two panels the two solid lines correspond to the ensemble range and
the dotted line is the 50% percentile. Notice that for the MR the projections are continuous
time series for the period 1900-2079, but are plotted here as overlapping thirty years periods
to facilitate the comparison with the PSR ensemble. The blue line in the middle panel
correspond to the I.C. model run randomly sampled to be used as surrogate for observed
anomalies (model M), and the green line (shown for reference in the first thirty years period)
corresponds to the baseline (1961-1990) anomalies of model M used to construct the PR
ensemble. Notice that the pattern scaled ensemble does not completely enclose the trajectory
of model M (blue line) as expected by construction. Bottom panel: the risk of a heat wave
occurrence, estimated as the fraction of model runs that overcome the 2.3◦ threshold, as
quantified by the MR (blue) and the PSR (red) ensembles. Solid colored lines indicate
fractions of runs over threshold for decadal means, and black solid (MR ensemble) and
black dashed (PSR) lines correspond to thirty years means. Notice that the MR projections
of changing risk are continuous time series for the period 1900-2079, but are plotted here as
overlapping thirty years periods to facilitate the comparison with the PSR ensemble
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Fig. 9 Same as figure 8 for Southern Europe but a different model M
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Fig. 10 Same as figure 8 for Central North America, but a different model M
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Fig. 11 Southern Europe projections for summer warming and risks of heat waves. The
pattern scaled ensemble in the middle pannel is obtained by adding the spatial pat-
terns of change Ps(x, im) T̃ (y) to randomly permuted versions of the baseline time series
Tbaseline(x, im, y) from the same model M as in figure 1 in the paper.
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Fig. 12 Central North America projections for summer warming and risks of heat waves.
The pattern scaled ensemble in the middle pannel is obtained by adding the spatial pat-
terns of change Ps(x, im) T̃ (y) to randomly permuted versions of the baseline time series
Tbaseline(x, im, y) from the same model M as in figure 8.


