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Abstract

Simulation models are widely employed to make probability fore-
casts of future conditions on seasonal to annual lead times. Added
value in such forecasts is reflected in the information they add either
to purely empirical statistical models, or to simpler simulation mod-
els. An evaluation of seasonal probability forecasts from the DEME-
TER and the ENSEMBLES multi-model ensemble experiments is pre-
sented. Two particular regions are considered (Nino3.4 in the Pacific
and Main Development Region in the Atlantic); these regions were
chosen before any spatial distribution of skill were examined. The
ENSEMBLES models are found to have skill against the climatologi-
cal distribution on seasonal time scales. For models in ENSEMBLES
which have a clearly defined predecessor model in DEMETER, the im-
provement from DEMETER to ENSEMBLES is discussed. Due to the
long lead times of the forecasts and the evolution of observation tech-
nology, the forecast-outcome archive for seasonal forecast evaluation is
small; arguably evaluation data for seasonal forecasting will always be
precious. Issues of information contamination from in-sample evalua-
tion are discussed, impacts (both positive and negative) of variations
in cross-validation protocol are demonstrated. Other difficulties due to
the small forecast-outcome archive are identified. The claim that the
multi-model ensemble provides a “better” probability forecast than the
best single model is examined and challenged. Significant forecast in-
formation beyond the climatological distribution is also demonstrated
in a persistence probability forecast. The ENSEMBLES probability
forecasts add significantly more information to empirical probability
forecasts on seasonal time scales than on decadal scales. Current op-
erational forecasts might be enhanced by melding information both
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from simulation models and from empirical models. Simulation mod-
els based on physical principles are sometimes expected, in principle,
to outperform empirical models; direct comparison of their forecast
skill provides information on progress toward that goal.

1 Introduction

Skillful probabilistic forecasting of seasonal weather and climate statistics
would be of value in many fields including agriculture, health and insurance.
Since the late nineties seasonal forecasting using dynamical models which
simulate the coupled atmosphere, ocean and land surface system has be-
come common in operational weather forecasting centres around the world.
In recent years, multi-model ensembles have become popular tools to in-
vestigate and account for shortcomings due to structural model error in
these simulation-model based predictions on time scales from days to sea-
sons and centuries (Palmer et al. (2004); Wang et al. (2009); Weisheimer
et al. (2009)). The potential for using large single simulation model ensem-
bles or multi-model ensembles depends critically on the forecast information
simulation models add beyond empirically based statistical approaches. Van
Den Dool (2007) provides a summary of these empirical models; sometimes
referred to as surrogate prediction generators (Smith (1992)) or empirical
benchmarks (Suckling and Smith (2013)). Contrasting the skill of empirical
models with simulation models can also be informative regarding structure
model error in the simulation models.

The need for a consistent experimental design for the assessment of skill
in multi-model seasonal forecasting was embraced by two large European
projects in the last decade. These projects provided the basis for subsequent
multi-model designs for operational seasonal-to-decadal forecasting (Vitart
et al. (2007); Kirtman et al. (2013)). The earlier European project, initiated
in 2000, was DEMETER (Palmer et al. (2004); Doblas-Reyes et al. (2005);
Hagedorn et al. (2005)), in which a consistent framework was developed to
conduct multi-model seasonal forecasting with a set of general circulation
models (GCMs). A similar framework was adopted in ENSEMBLES (Hewitt
and Griggs (2004); Weisheimer et al. (2009); Doblas-Reyes et al. (2010)),
which produced the next generation of seasonal hindcast (or retrospective
forecast) simulations, using updated model versions. Further details of the
ENSEMBLES & DEMETER experiments can be found in Table 1 & 2 in
the Supplementary Material.

The multi-model ensemble simulations from these projects provide a ba-
sis for the quantification of skill in GCM forecasts and an opportunity to
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assess the benefit of using multi-model ensembles (Weisheimer et al. (2009);
Alessandri et al. (2011)) over other approaches, such as forecasts based on
statistical models (Coelho et al (2006); Oldenborgh (2005); Smith (1992);
Suckling and Smith (2013); Van Den Dool (2007)). Furthermore, the con-
sistency between the experimental design of the DEMETER and ENSEM-
BLES seasonal forecasts makes it possible to quantify the improvement of
skill, or in other words, the additional information gained from the fore-
casts due to model development in the intervening period between the two
projects. While evaluations of skill between individual model versions may
exist in-house at forecast centres, the authors are unaware of any systematic
comparison across centres and model versions. The analysis presented below
allows direct comparisons between both the relative performance of and the
improvement in different models.

Two particular regions are considered. As a coupled atmospheric and
oceanic phenomenon, the El Niño/Southern Oscillation (ENSO) in the trop-
ical Pacific is the dominant mode of seasonal and interannual climate vari-
ability. Sea surface temperatures (SSTs) in the Nino3.4 region at seasonal
timescales provides an indicator for the ENSO phenomenon. SSTs in the
Main Development Region (MDR), over the North Atlantic, provide an in-
dicator for hurricane activity over the coming season. This paper focuses
on probability forecast skill in these two regions.1 Probabilistic skill of
seasonal forecasts from both DEMETER and ENSEMBLES are evaluated
and contrasted. In each case, ensembles of GCM simulations are trans-
formed into probabilistic distributions via kernel dressing (see Bröcker and
Smith (2007)) and blended with the climatological distribution to provide
calibrated seasonal forecasts; this approach has influenced operational fore-
casting (Hagedorn and Smith (2009); Met (2013)). Evaluating probability
forecasts as probability forecasts, rather than computing summary statistics
of the ensemble mean, allows clearer consideration of the uncertainties sam-
pled by the multi-model ensemble. It is also more easily interpreted in terms
of the value, or information content, of the forecast from a decision-makers
perspective.

An overview of the DEMETER and ENSEMBLES multi-model exper-
iments used to evaluate seasonal forecast skill over the Nino3.4 and MDR
regions are given in section 2 and the approach to generating probabilistic
forecasts and evaluating them is described in Section 3. In Section 4, proba-

1Attention was restricted to these two regions prior to examination of forecast skill in
any other regions. This approach eases interpretation of the statistical significance of the
results obtained over studies that examine the entire globe and then focus analysis on
areas with “significant” skill.
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bilistic skill above that of the climatological distribution is demonstrated up
to a lead time of seven months for SSTs over the Nino3.4 region and up to a
lead time of two months for SSTs over the MDR. In Section 5 forecasts from
the ENSEMBLES models show improvements in skill compared to those
from DEMETER for each of the models that are common to both projects.
Broadly speaking these results are consistent with previous evaluations of
skill from the DEMETER and ENSEMBLES projects (Weisheimer et al.
(2009); Alessandri et al. (2011)), in which improvements in the anomaly
correlation, RMS and Brier scores from DEMETER to ENSEMBLES were
reported for SSTs over the tropical Pacific and some other regions up to
six months ahead. Section 6 shows that somewhat surprisingly competitive
results can be formed from purely empirical probability forecasts based on
persistence. A similar result has been found for decadal forecasts (specifi-
cally, probability forecasts of annual mean values on lead times of one to ten
years) by Suckling and Smith (2013), who demonstrate that some empirical
models often outperform the ENSEMBLES models on these decadal scales.
The illustrations presented in Section 7 suggest that increasing the ensem-
ble size of future multi-model experiments could provide an efficient way
of improving forecast skill, while Sections 8 and 9 highlight the motivation
for using proper scoring rules and the challenges involved in model combi-
nation to produce multi-model ensemble forecasts, respectively. Section 10
discusses the issues of information contamination when data are precious.
The key results and conclusions are summarized in section 11.

2 The seasonal multi-model ENSEMBLES fore-

casts

The ENSEMBLES multi-model ensemble experiment for seasonal-to-annual
forecasting comprises global coupled atmosphere-ocean climate models from
the UK Met Office (UKMO), Météo France (MF), the European Centre for
Medium-Range Weather Forecasts (ECMWF), the Leibniz Institute of Ma-
rine Sciences at Kiel University (IFM-GEOMAR) and the Euro-Mediterranean
Centre for Climate Change (CMCC-INGV) in Bologna (Doblas-Reyes et al.
(2010)). In each case the ensemble simulations include all the major ra-
diative forcings; none of the coupled models has flux adjustments (Hewitt
and Griggs (2004); Weisheimer et al. (2009); Doblas-Reyes et al. (2010)).
A set of seasonal hindcast simulations cover the 46 year period from 1960
to 2005. For each launch date the atmosphere and ocean for each model
were initialized using realistic estimates of their observed states, providing
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an ensemble consisting of nine initial condition ensemble members for each
model. Hindcast simulations were launched on the first day of February, of
May, of August and of November each year over the hindcast period and
run for seven months. This set of 46 seasonal forecasts for each launch date
is analysed below. Additionally each model, with the exception of CMCC-
INGV, was run for an extended period up to a lead time of 14 months from
the November launch.

Improvements made in the ENSEMBLES multi-model forecasting sys-
tem include a better representation of sub-gridscale physical processes in
the simulation models, the inclusion of interannual variability in the green-
house gas forcing and the use of improved ocean data assimilation, based
on quality-controlled in situ ocean temperature and salinity profiles for
the construction of the initial conditions (Ingleby and Huddleston (2007);
Weisheimer et al. (2009)). Given two simulation models from the same mod-
elling centre, the experimental designs are sufficiently consistent to allow a
direct comparison between the skill of seasonal forecasts from each version
of the system. Further details of the models used for the DEMETER and
ENSEMBLES projects are provided in Tables 1 and 2 of the Supplement
Material.

3 Defining probabilistic forecast skill

Simulations from dynamical models are often used to make probabilistic pre-
dictions with the aim of providing useful information for decision support.
Evaluating the performance of these predictions, as well as understanding
the sources of skill, is crucial for guiding decision-makers in which regions
and on what timescales of interest the models are likely to be informative.
And perhaps more importantly clarifying when they are likely to be mis-
informative. Only proper scoring rules offer appropriate, clear measures of
probabilistic forecast skill (Bröcker and Smith (2006); Wilks (2005)).

I. J. Good’s logarithmic score (Ignorance) (see Good (1952); Roulston
and Smith (2002); Bröcker and Smith (2006)), is unique among several scor-
ing rules (Wilks (2005)) designed for evaluating the skill of probabilistic
forecasts. It is the only proper and local score2 for continuous variables (see
Bernardo (1979); Raftery et al. (2005); Bröcker and Smith (2006)). The

2Proper meaning that it cannot be optimized by hedging the probabilistic forecasts
toward other values against the forecasters true belief (Bröcker and Smith (2006); Weigel
et al. (2008)). Local meaning that the score depends solely on the probability assigned to
the outcome, rather than being rewarded for other features of the forecast distribution,
such as its shape.
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Ignorance Score is defined by:

S(p(y), Y ) = − log2(p(Y )), (1)

where Y is the observed outcome and p(y) is the density function of the
forecast distribution. Ignorance has a clear interpretation in terms of gam-
bling returns (see Good (1952); Kelly (1956); Roulston and Smith (2002)):
Under a certain betting scenario, “Kelly Betting” (Kelly (1956)), the Igno-
rance describes the expected rate at which the forecaster’s wealth changes
with time. Through its close relation to Shannon’s information entropy, Ig-
norance can also be related to the amount of information expected from a
forecast (see Roulston and Smith (2002)). It is easily communicated as an
effective interest rate (see Hagedorn and Smith (2009)).

In practice, given K forecast-outcome pairs, (pt, Yt, t = 1, ...,K), the
empirical Ignorance score is:

SE(p(y), Y ) =
1

K

K
∑

i=1

− log2(pi(Yi)). (2)

Relative Ignorance reflects the performance of (a set of) forecasts p from
one model relative to those of a reference forecast pref :

Srel(p(y), Y ) =
1

K

K
∑

i=1

− log2[(pi(Yi))/pref (Yi)]. (3)

The relative Ignorance of two forecast systems quantifies the information
gain (in terms of bits) the model forecast system provides over the refer-
ence system. In other words, Ignorance reflects the (average) increase in
probability density that the model forecast placed on the outcome relative
to that of the reference forecast. By convention, Ignorance is a negatively
oriented score, which means the smaller the score more skillful the forecasts.
An Ignorance score of Srel = −1 means that, on average, forecasts from the
model assign twice the probability density to the outcome compared to the
reference forecast, while Srel = −2 indicates a four (22) fold increase. Suit-
able references could include the climatological distribution, a probability
forecast from a statistical model, or forecasts from another GCM. The clima-
tological distribution provides the primary benchmark for seasonal forecast
skill in this paper, see however Section 6.

Probability forecasts are generated from the DEMETER and the EN-
SEMBLES simulations via kernel dressing and are blended with climatology
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to produce seasonal probability forecasts (for a full description see Bröcker
and Smith (2007), and Appendix A). The climatological distribution is es-
timated by kernel dressing all available historical observations under cross-
validation (see Appendix B). Figure 1 shows an example of the kernel dressed
and blended probabilistic forecast distributions for a subset (over the period
1995-2000) of the IFS(ECMWF) hindcast simulations from ENSEMBLES
for the Nino3.4 index, launched in November. The blue shaded regions in-
dicate the forecast percentiles between 1-99% and the red line shows the
observed outcome (from the ERA40 reanalysis) for comparison. The grey
shaded bands show the percentiles between 1-99% for the climatological
distribution.

Figure 1: Probabilistic forecast distributions for the IFS(ECMWF) hindcast
simulations from ENSEMBLES for the Nino3.4 index, launched in November
over the period 1995-2000. The blue shaded regions indicate the forecast
percentiles between 1-99% and the red line shows the observed outcome
from the ERA40 reanalysis. The grey shaded intervals show the percentiles
for the climatological distribution.

The empirical Ignorance score of the dressed and blended GCM forecasts
is then computed as a function of lead time (in months) for SSTs over the
MDR and Nino3.4 regions relative to the climatology in Section 4. Fore-
casts from each of the ENSEMBLES models are contrasted with those of
DEMETER in Section 5.
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4 ENSEMBLES seasonal forecast skill

Figures 2 and 3 show the skill of probability forecasts from each of the mod-
els and launch dates available in the ENSEMBLES seasonal forecast project.
Figure 2 shows empirical Ignorance scores for forecasts of the Nino3.4 index
as a function of lead time, in months, relative to climatology. Each of the
four panels corresponds a different forecast launch month (as indicated). In
general at short lead times all the models are substantially more skillful than
climatology (that is a negative relative Ignorance) for all four initialization
dates. This result is generally consistent with Weisheimer et al. (2009), who
reported anomaly correlation skill for the multi-model ensemble mean was
found to decay with lead time over the Nino3 region, to ∼0.5 up to fourteen
months ahead. At longer lead times ENSEMBLES models show systemati-
cally less skill than at early lead times, as expected. In each case, however,
the simulation models demonstrate skill above the climatology up to a lead
time of seven months. For the hindcasts launched in November some skill
appears up to a lead time of fourteen months (although an alternative cross-
validation protocol casts some doubt on this result - see Section 10). At
the longer lead times relative Ignorance scores of approximately −0.25 are
found for most models, which translates into the simulation models placing,
on average, ∼ 19% more probability density on the outcome compared to
the climatological distribution. The IFS(ECMWF) and HadGEM2(UKMO)
models often score slightly lower (are more skillful) than the other three
models. The sampling uncertainty across forecast launches is represented
by a bootstrap resampling procedure, which resamples the set of forecast
Ignorance scores for each model, with replacement. The bootstrap resam-
pling intervals are shown as vertical bars in each of the figures as a 5-95%
interval.

Figure 3 shows the Ignorance score as a function of lead time for SSTs
over the MDR relative to climatology. Compared to the Nino3.4 index, hind-
casts of SSTs in the MDR are less informative at all lead times, particularly
for the forecasts launched in November, whose performance decreases sig-
nificantly within the first two months. Despite the higher Ignorance scores
(lower skill), the GCM hindcasts for the MDR demonstrate significant skill
relative to climatology up to seven months ahead for most models and launch
dates, with the exception of the November launch. Comparison with alter-
native benchmarks, like the persistence forecast show much larger variation
than altering the cross-validation scheme.
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In Figures 2 and 3, two models with similar bootstrap resampling inter-
vals might be misinterpreted to suggest that neither model is significantly
better than the other. Bootstrap resampling skill against climatology is mis-
leading if interpreted incorrectly. One model can systematically outperform
a second model on every forecast yet the resample ranges in the skill rela-
tive to climatology may overlap. The relative Ignorance between two models
on the other hand, provides a clear result reflected in bootstrap resampling
from the model-model relative scores.

Figure 4 shows the Ignorance of each of the ENSEMBLES models for the
Nino3.4 index relative to the IFS(ECWMF) model. There are indeed some
cases where the IFS(ECMWF) model outperforms all other models despite
the overlapping bootstrap resampling intervals in Figure 2. For example, the
IFS(ECMWF) model systematically outperforms the ARPEGE(CNRM),
ECHAM5(INGV) and ECHAM5(IFMK) models particularly at early lead
times for most launch dates. In the case analysed above, there is substantial
information in the forecasts from the ENSEMBLES models for the Nino3.4
index even at longer lead times; the IFS(ECMWF) model shows higher skill
(often exceeding 0.5 bits in the first 6 months) relative to the other seasonal
forecast models used in ENSEMBLES.

5 Contrasting skill of ENSEMBLES & DEMETER

The methods and models used for the seasonal hindcast experiments in the
ENSEMBLES project were developed in light of the experience gained and
models available from the DEMETER project. The DEMETER seasonal
hindcasts and ENSEMBLES hindcasts for the same verification period pro-
vide an opportunity to measure the improvement of forecast skill after four
years of model development. Such an evaluation is aided by the similarities
in the experimental design between the two projects.

Figure 5 shows the Ignorance score of each of the DEMETER model
forecasts for the Nino3.4 index relative to climatology. With the exception
of ECHAM5(MPI), each model appears substantially more skillful than cli-
matology at all lead times and for all four initialization dates. The lack of
skill demonstrated by the ECHAM5(MPI) model reflects the fact that when
its ensemble members are dressed and blended with climatology (see Ap-
pendix A), they are assigned relatively little weight (that is the forecast is
virtually the climatological distribution). There is little or no contribution
from the ECHAM5(MPI) model ensemble to the calibrated forecast beyond
a lead time of three months. This is particularly true for the November
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launch, in which the forecast blending parameter as a function of lead time,
α, takes values [α = 0.90, 0.81, 0.02, 0.00, 0.00, 0.00], respectively.

In order to measure the improvement of forecast performance due to
model development from the DEMETER to the ENSEMBLES project, the
Ignorance of the forecast distributions derived from pairs of model simula-
tions from each project is compared. Although seven European simulation
models were used in the DEMETER project, only those models that corre-
spond to earlier “versions” of those used in ENSEMBLES are considered.

Figure 6 shows the Ignorance for seasonal forecasts of the Nino3.4 index
forecasts from the ENSEMBLES models relative to those of the correspond-
ing DEMETER models. In general, the relative Ignorance scores in Figure 6
demonstrate improvements for ENSEMBLES (negative relative Ignorance
scores) for most lead times and for most models. The ECHAM5(INGV)
model is an exception to this finding; the reduction in skill for this model
is consistent with Alessandri et al. (2010), which it was shown that sub-
surface data assimilation for ocean initialization degraded prediction skill
over the tropical Atlantic. The ECHAM5(IFMK) model shows substantial
improvements, up to one bit, at early lead times, particularly for forecast
launches in February and May (the ENSEMBLES model placing twice the
probability density on the outcome compared to the DEMETER model).
Improvements are also demonstrated at lead times beyond three months
for forecasts launched in August, particularly for the ECHAM5(IFMK) and
HadGEM2(UKMO) models.

6 Contrasting ENSEMBLES seasonal skill with per-

sistence forecasts

In the previous sections the climatological distribution was used as a bench-
mark against the performance of the ENSEMBLES and the DEMETER sea-
sonal hindcasts. Whilst comparing skill between simulations from dynamical
models and climatology provides insight into the information gained from
forecasting with those dynamical models, other simple empirical models can
also serve as appropriate benchmarks to model performance (Smith (1992);
Suckling and Smith (2013)). A probabilistic persistence forecast provides
an interesting benchmark accounting for the effects both of physical persis-
tence and of any long term drift in the temperature of the target region.
Whether the additional skill in the ENSEMBLES models over the Nino3.4
region compared to the MDR is related to the strong persistence of ENSO
can be investigated by looking at the performance of forecasts over these
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two regions relative to a persistence model3. The persistence forecasts gen-
erated here use the observed SST value over the chosen region in the month
prior to the forecast launch, persisted forward in time, and transformed into
a probabilistic distribution using kernel dressing parameters that vary with
lead time (as described in Suckling and Smith (2013)). While more com-
plex persistence models could be constructed easily, this simple version is
sufficient for purpose here.

Figure 7 shows the Ignorance score of each of the ENSEMBLES mod-
els for the Nino3.4 index relative to persistence. For forecasts launched
in February most of the ENSEMBLES models are significantly more skill-
ful than persistence at all lead times. For launch dates in August and
November little if any information is added compared to the persistence
forecasts for most models at any lead time. In fact at early lead times
(up to three months ahead) persistence outperforms the ECHAM5(IFMK)
and ARPEGR(CNRM) models. At moderate lead times for the August
launch and most lead times in the May launch, on the other hand, the
IFS(ECMWF) and HadGEM2(UKMO) models outperform persistence.

Figure 8 shows the corresponding results for the MDR index relative to a
probabilistic persistence forecast. In this case the ENSEMBLES models and
persistence have similar skill, with no one model emerging as significantly
better than another. These comparable levels of skill suggest that blending
statistical model output with simulation model output is likely to add value
to seasonal forecasts.

7 More models or more members?

Knowledge of the relationship between ensemble size and forecast quality
aids forecast system design. The cost of increasing the number of ensemble
members is typically small relative to the cost of model development. The
cost of increasing the ensemble size increases only (nearly) linearly. It is often
true that the quality of the forecast increases with the number of ensemble
members as well, however this improvement in forecast skill depends on
both the current ensemble size and the quality of that model’s ultimate
distribution. The seasonal forecasts from the ENSEMBLES project provide
an opportunity to investigate the relationship between ensemble size and
forecast quality. This analysis would be eased, for example, had one launch
date included an increased number of members so that the value of additional

3We are very grateful to an anonymous reviewer for suggesting this comparison.
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members could be tested more directly.4

Figure 9 shows the effect of decreasing the number of ensemble mem-
bers on the forecast skill for the Nino3.4 index from the IFS(ECMWF)
model launched in November. The skill of two-member ensembles (red) and
four-member ensembles (green) are shown relative to the full nine-member
ensemble (the zero line) both as a set of random draws from the nine original
members without replacement (Figure 9a) and as the average Ignorance of
all two- or four-ensemble member combinations (Figure 9b). In Figure 9a
most two- and four-member combinations show less skill than the full nine-
member ensemble, with only a few ensemble member combinations scoring
better than the original ensemble now and then. Figure 9b shows that
decreasing the number of ensemble members systematically decreases the
average skill (that is, increases the Ignorance score) across all lead times.
This result holds both when decreasing from nine members to four members
and when decreasing from four to two ensemble members. At a lead time of
six months, where the IFS(ECMWF) model still has non-trivial skill rela-
tive to climatology (Figure 2), for example, the two-member forecast places
∼ 7% and the four-member ensemble places ∼ 3% less probability density on
average on the outcome5 relative to the nine-member ensemble (Figure 9b).
This result suggests that increasing the current ensemble size of nine would
further improve the forecast performance6.

A larger ensemble could be obtained either by increasing the number
of ensemble members from one particular model, or, alternatively, by com-
bining simulations from different models to form a multi-model ensemble
(see Palmer et al. (2004); Weigel et al. (2008)). Of course developing a new,
ideally independent model is more costly than increasing the number of en-
semble members from an existing model. Combining the output of different
(independent) models might, however, have the added advantage of reducing
the systematic bias of any single model7. One may therefore reasonably ex-

4Quantifying the value added by including an N + 1st additional ensemble member
requires some subset of forecasts running more than N members. Although discussed
early in the ENSEMBLES project, the decision was taken to use nine member ensembles
throughout.

5Under true cross-validation (see Section 10) the effect increases: a two-member fore-
cast places ∼ 15% less probability on the observed outcome.

6Operational systems may typically consist of 40 to 50 ensemble members. Without
hindcast sets, representative of operational systems, however, it is impossible to fully test
this hypothesis.

7In practice, numerical models developed for weather and climate simulations are far
from independent because they share common parametrizations and numerical schemes,
and are typically tuned towards the same training dataset. And they face the same
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pect to obtain significantly more information by using multi-model outputs
than by increasing the number of ensemble members from a single model.

Figure 10 shows the Ignorance score for a set of multi-model forecasts,
in which ensemble members from each of the different ENSEMBLES mod-
els are treated equally (that is each ensemble member is assigned equal
weight). Here the nine-member IFS(ECMWF) forecasts define the zero line.
Figure 10a shows the Ignorance score for forecasts built from multi-model
ensembles containing four members randomly drawn from the 36 available
ensemble members (nine members from each of four models) without re-
placement. Similarly, Figure 10b shows the skill of multi-model ensembles
containing nine randomly drawn members. The blue line in each case shows
the skill of the full multi-model ensemble, containing 36 members from
simulations of the IFS(ECMWF), HadGEM2(UKMO), ECHAM5(IFMK)
and ARPEGE(CNRM) models. The four-member multi-model forecasts are
shown to perform substantially worse than the nine-member IFS(ECMWF)
ensemble (indicated by positive Ignorance scores), particularly over short
lead times (up to eight months). The skill of the nine-member multi-model
forecasts are generally increased compared to the four-member forecasts,
however, the single-model, IFS(ECMWF), forecast is still shown to be more
skillful8 than the multi-model forecast at short lead times. This is also true
for the full 36-member multi-model forecast, although at longer lead times
(beyond eight months) the full multi-model ensemble is shown to outper-
form the IFS(ECMWF) ensemble. This result in this case suggests that
increasing the ensemble size of the “best” model is most likely to improve
forecast skill in these regions.

8 The importance of being proper

It is sometimes said that a multi-model ensemble forecast is more skillful
than any of its constituent single-model ensemble forecasts. This may be the

technological (computation) limitation. This leads to structural similarities the models
and, consequently, to common shortcomings, (e.g. in “blocking”).

8As noted by a referee, in this study the “best” model has been identified in-sample.
In this particular study, the ECMWF model is by far the highest scoring model across
forecasts (see Supplement Material), and is typically ranked first or second in over half
of all skillful forecasts. Rather than resample to show ECMWF is the best, the fraction
of times it is best or second is shown in supplement material. Note also Table 1 and
Table 2 in this context. In practice, determining the best model a priori, either for a
given purpose, or in a multidimensional sense, is not straightforward (if possible at all).
In-sample evaluations of past model performance over relatively short hindcast periods
further hinder this task.
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case in terms of reducing root-mean-square (RMS) like scores (see Palmer et
al. (2004); Hagedorn et al. (2005); Bowler et al. (2008); Weigel et al. (2008);
Weisheimer et al. (2009); Alessandri et al. (2011)). For probability forecasts,
the definition of skill should reflect the characteristics of the forecast prob-
lem. While RMS scores are effectively optimal in linear stochastic systems,
they are misleading in evaluating nonlinear forecast systems, even when the
data is not precious. Indeed RMS scores can be misleading even in the limit
of an infinite forecast-verification archive (see McSharry and Smith (1999)).
Improvements in RMS skill when using multi-model ensembles may be due
to error cancellation from independent model contributions (see Hagedorn
et al. (2005); Kang and Yoo (2006); Bowler et al. (2008)). For example,
if some of the single-model ensembles lie below the observations and some
lie above then the ensemble mean could lie closer to the observed outcome
than any single ensemble member. While such an error cancellation would
reduce the RMS score, rewarding the multi-model forecast more than any
single model contribution, a proper skill score (Bröcker and Smith (2006))
would not credit this “false” skill. Similarly, combining ensemble members
from different models may serve to reduce the variance of ensemble mean
statistics, which in turn may lead to a lower RMS score. Indeed, if the en-
semble variance is large, adding “information free” ensemble members at the
mean value will reduce the RMS error, but need not improve a probabilistic
score.

It has also been suggested that the multi-model ensemble forecast outper-
forms any of the single-model ensemble forecasts by reducing an apparent
overconfidence in any one model (see Weigel et al. (2008); Weisheimer et
al. (2009); Alessandri et al. (2011)). Such “improvements” can be easily
over-interpreted, however; as merely doubling the ensemble size under the
same model may significantly increase the spread of the forecast distribution.
Another way to widen the ensemble spread is simply to blend (Bröcker and
Smith (2007)) the model forecast distribution with an estimate of the cli-
matological distribution based on the historical observations (see Appendix
A for details). Two single-model forecasts may be ranked differently be-
fore and after blending with the climatological distribution. The effect of
multi-model combination on seasonal forecast skill is investigated below.
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9 Multiple models Ensembles when data are pre-

cious

There are many ways in which forecast distributions, generated from ensem-
bles of individual model runs can be combined to produce a single proba-
bilistic multi-model forecast distribution. One approach may be to assign
equal weight to each model and simply sum the distributions generated from
each model to obtain a single probabilistic distribution (see Hagedorn et al.
(2005)). When different forecast models do not provide equal amounts of in-
formation, one may want to weight the models according to some measure of
past performance, see for example Krishnamurti et al. (1999); Rajagopalan
et al. (2002); Doblas-Reyes et al. (2005). The combined multi-model forecast
is the weighted linear sum of the constituent distributions,

pmm =
∑

i

ωipi, (4)

where the pi is the forecast distribution from model i and ωi its weight,
with

∑

i ωi = 1. The weighting parameters may be chosen by minimizing
the Ignorance score for example, although fitting ωi in this way can be
costly and is typically complicated by different models sharing information.
And, of course, the weights of individual models are expected to vary as a
function of lead time. Another, perhaps more fundamental problem of such
a weighting procedure is that ωi are likely to be over- or under-fitted when
the forecast-outcome archive is small (Peng (2002); Smith et al. (2013)).

To avoid complications with fitting model weights a simple iterative
method to combine models is used below: First, a reference forecast dis-
tribution is derived from the ensemble members of one particular candidate
model, in this case the IFS(ECMWF) forecasts, which were argued to pro-
vide the most skillful seasonal forecasts for the Nino3.4 index back in Sec-
tion 4. Each of the other candidate models, in turn, is then combined with
the IFS(ECMWF) model by deriving a forecast distribution from the ensem-
ble members of both models, equally weighted. The skill of each two-model
combination is computed in terms of Ignorance relative to the IFS(ECMWF)
reference forecast and shown in Table 1 for the November launch forecasts
of the Nino3.4 index. Each model combination shows the average relative
Ignorance (negative scores indicate an improvement over simply using the
IFS(ECMWF) forecast). The preponderance of positive values in the 5th,
8th and 11th columns of Table 1 indicates that there is no clear improve-
ment in skill for any two-model combination in this case. All values at lead
times less than eight months are positive (In fact all but two of the 42 values
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in these columns of the entire table are positive). Arguably beyond eight
months the improvements in skill are not significant; the bootstrap resam-
pling intervals overlap with zero relative skill in each case. Table 2 shows
the corresponding results when other models are combined with the UKMO
model. In this case combining with ECMWF tends to improve the average
Ignorance at all lead times (negative values in 4th and 5th columns of Table
2), but no other combination does this (all values in 8th and 11th columns
are positive). Starting with ECMWF, combining UKMO has a much smaller
effect. In cases where significant improvements are found from such a model
combination then further models could be included into the multi-model
forecast by choosing those models which yield the biggest improvement in
skill and adding them into the forecast one by one with equal weight until
no further skill can be added. In this case, however, results suggest that
the most skillful seasonal forecasts are provided by using ensemble members
from a single model.

10 Establishing skill when data are precious

The DEMETER and the ENSEMBLES seasonal hindcast archive contains
merely 46 independent forecast-outcome pairs for each launch date. At sea-
sonal forecast timescales and longer, no true out-of-sample evaluation can
be achieved in less than a decade if not longer; evaluations today must nec-
essarily be in-sample. In this case, it is desirable to strike a balance between
using as much of the available data as possible to obtain the best results
and holding back enough data so as to avoid information contamination
(overfitting) which would lead to poor estimates of real-time operational
skill.

The results shown in the previous sections used median cross-validation
protocol as described in Appendix B; no additional data is held back in
the evaluation of probabilistic forecast distributions beyond that excluded
when determining the kernel parameters. While using median values for
u, σ and α seems unlikely to allow significant information contamination,
this median leave-one-out protocol is not “true” cross-validation. In a true
cross-validation protocol, more than one segment of data at a time must
be removed from the fitting protocol. This reduces chance of information
contamination, it also reduces true quality of the estimation when data are
precious. Appendix B details both protocols.

Figure 11 shows the skill of forecasts from the ENSEMBLES models
using true cross-validation. Figure 11a shows the Ignorance score for fore-
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LT ECMWF ECMWF&UKMO ECMWF&CNRM ECMWF&IFMK
5% mean 95% 5% mean 95% 5% mean 95%

1 -2.15 -0.08 0.05 0.16 0.05 0.17 0.28 0.07 0.20 0.30
2 -2.03 -0.29 -0.07 0.10 -0.17 0.04 0.24 0.15 0.33 0.47
3 -1.63 -0.44 -0.16 0.08 -0.21 0.04 0.23 -0.09 0.18 0.37
4 -1.36 -0.17 -0.03 0.10 -0.05 0.11 0.26 0.13 0.29 0.41
5 -1.10 -0.19 0.01 0.16 -0.25 -0.04 0.16 0.09 0.28 0.42
6 -0.73 -0.16 0.01 0.17 -0.04 0.11 0.25 0.03 0.19 0.31
7 -0.53 -0.05 0.09 0.22 -0.07 0.07 0.20 0.09 0.18 0.26
8 -0.34 -0.06 0.05 0.15 -0.04 0.06 0.16 -0.04 0.06 0.15
9 -0.23 -0.14 -0.04 0.05 -0.10 0.00 0.11 -0.14 -0.04 0.04
10 -0.27 -0.16 -0.06 0.03 -0.17 -0.05 0.06 -0.14 -0.04 0.05
11 -0.22 -0.32 -0.17 -0.02 -0.22 -0.08 0.06 -0.33 -0.20 -0.08
12 -0.28 -0.20 -0.09 0.01 -0.17 -0.05 0.07 -0.13 -0.03 0.07
13 -0.35 -0.08 -0.01 0.06 -0.20 -0.03 0.11 -0.14 -0.05 0.05
14 -0.39 -0.12 -0.03 0.07 -0.12 0.00 0.13 -0.31 -0.12 0.03

Table 1: Ignorance of each two-model forecast combination, as labeled, rela-
tive to the IFS(ECMWF) forecast for each (monthly) lead time for seasonal
forecasts of the Nino3.4 index, launched in November. In each case the
individual models are also blended with the climatological distribution us-
ing blending parameters that minimize the Ignorance score. Each two-model
combination shows the average relative Ignorance and the 5−95% bootstrap
resampling intervals, which provide an estimate of sampling uncertainty of
the relative skill score. For comparison, the second column shows the skill
of the (single) ECMWF model relative to climatology.
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LT UKMO UKMO&ECMWF UKMO&CNRM UKMO&IFMK
5% mean 95% 5% mean 95% 5% mean 95%

1 -1.90 -0.35 -0.21 -0.08 -0.02 0.08 0.17 -0.01 0.11 0.22
2 -1.92 -0.41 -0.18 0.01 0.03 0.12 0.21 0.22 0.34 0.44
3 -1.64 -0.33 -0.15 -0.01 0.00 0.13 0.26 0.14 0.28 0.40
4 -1.29 -0.24 -0.13 0.00 -0.09 0.06 0.20 0.13 0.26 0.38
5 -0.87 -0.37 -0.22 -0.09 -0.34 -0.12 0.07 0.06 0.21 0.33
6 -0.43 -0.49 -0.30 -0.11 -0.38 -0.12 0.09 -0.11 0.06 0.20
7 -0.13 -0.45 -0.31 -0.16 -0.30 -0.13 0.02 -0.09 0.00 0.08
8 -0.14 -0.26 -0.15 -0.06 -0.20 -0.05 0.06 -0.24 -0.07 0.06
9 -0.24 -0.15 -0.04 0.05 -0.21 -0.03 0.12 -0.18 -0.06 0.05
10 -0.32 -0.12 -0.02 0.08 -0.10 0.00 0.10 -0.12 -0.02 0.08
11 -0.33 -0.24 -0.05 0.12 -0.15 -0.01 0.13 -0.40 -0.16 0.03
12 -0.32 -0.22 -0.06 0.09 -0.11 0.00 0.10 -0.17 -0.03 0.11
13 -0.31 -0.13 -0.05 0.03 -0.14 -0.02 0.12 -0.17 -0.07 0.03
14 -0.31 -0.24 -0.10 0.03 -0.11 0.00 0.10 -0.39 -0.18 0.01

Table 2: Ignorance of each two-model forecast combination, as labeled, rel-
ative to the HadGEM2(UKMO) forecast for each (monthly) lead time for
seasonal forecasts of the Nino3.4 index, launched in November. In each case
the individual models are also blended with the climatological distribution
using blending parameters that minimize the Ignorance score. Each two-
model combination shows the average relative Ignorance and the 5 − 95%
bootstrap resampling intervals, which provide an estimate of sampling un-
certainty of the relative skill score. For comparison, the second column
shows the skill of the (single) UKMO model relative to climatology.
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casts of the Nino3.4 index, launched in November. Comparing Figure 11a
with Figure 2d shows clearly a reduction in skill at longer lead times under
the true cross-validation protocol, as well as a widening of the bootstrap
resampling intervals in some cases. Significant skill above climatology is
demonstrated only up to a lead time of four months. Similarly Figure 11b
shows the skill of the ENSEMBLES model forecasts for the MDR index. In
this case significant skill above climatology is shown to vanish beyond a lead
time of two months.

The preferred cross-validation protocol when the data archive is small is
unclear. The approach taken here is to consider more than one protocol. The
true cross-validation protocol employed in this section (Figure 11) reflects
the expected reduction in the skill of models simply because less data is used
to calibrate the forecasts. The median cross-validation protocol (Figure 2
and 3) runs the risk of overfitting the dressing parameters. Only out-of-
sample evaluation could establish which effect dominates in this case.

Figure 12 illustrates the effect of the different cross-validation protocols
on the calculated skill of the seasonal forecasts. The figure shows Ignorance
scores for the IFS(ECMWF) model from ENSEMBLES relative to climatol-
ogy using the median (x-axis) and true (y-axis) cross-validation protocols
for forecasts of the Nino3.4 index. Each of the four panels corresponds to a
different forecast launch month (as indicated). As expected, on average the
true cross-validation protocol suggests less skill (that is, larger Ignorance
scores) relative to median cross-validation. This improvement on average is
not systematic across individual forecasts. The reduction of skill under true
cross-validation protocol is small in most cases, giving increased confidence
to results using median cross-validation. The most prominent differences are
at the highest values of Ignorance where the forecasts have little skill under
either protocol. For the November launch this typically occurs at longer
lead times (beyond seven months). The argument here is merely that it is
important to consider questions of cross-validation when data are precious.

11 Conclusions

The current generation of seasonal forecasts will retire before the forecast-
outcome archive grows significantly larger: seasonal verification data are
precious! This complicates forecast calibration, and evaluation must be
performed using cross-validation with only a small sample. Nevertheless
probabilistic seasonal forecasts based on the ENSEMBLES stream II exper-
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iment demonstrate increased skill in forecasting sea surface temperatures in
the Nino3.4 region over that of the DEMETER model simulations. Fur-
ther analysis suggests that increasing the ensemble size could potentially
improve forecast skill further. Such evaluations of skill, on the other hand,
should be analysed with care. RMS-based skill scores can obscure skill in
nonlinear systems. The statistical characteristics reflected in RMS scores
differ from those using strictly proper scoring rules, which are recommended
for evaluations of such nonlinear systems as in weather and climate dynam-
ics. The evidence of skill presented, particularly at moderate lead times, is
shown to be robust to different choices of appropriate (proper) scores (see
Supplementary Material), and may prove to have nontrivial value in appli-
cation. Simulation based forecasts clearly outperform climatological prob-
ability forecasts in many cases. The fact that empirical persistence-based
probability forecasts provide a significantly stronger challenge suggests that,
in practice, the skill of operational forecast systems can be enhanced with
information from the richer empirical models. Distinguishing the limita-
tions of this level of skill from the limitations of our current skill scores and
evaluation methodologies will also prove of great value, both in terms of in-
forming future experimental designs for multi-model ensemble projects and
for determining the value of these forecast systems to decision-makers.

A From Simulation to a PDF

An ensemble of simulations is transformed into a probabilistic distribution
function by a combination of kernel dressing and blending with climatology
(see Bröcker and Smith (2007)). An N -member ensemble at time t is given
as Xt = [x1t , ..., x

N
t ], where xit is the value of a physical quantity (for example

the SST in the MDR region) for the ith ensemble member. For simplicity,
all ensemble members under given a model are treated as exchangeable. In
other words, the ensemble interpretation does not depend on the ordering
of the ensemble members as long as they are generated by the same model
(Bröcker and Smith (2007)). Kernel dressing defines the model-based com-
ponent of the density as:

p(y : X,σ) =
1

Nσ

N
∑

i

K

(

y − (xi − µ)

σ

)

, (5)
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where y is a random variable corresponding to the density function p and
K is the kernel, taken here to be

K(ζ) =
1

√
2π

exp(−
1

2
ζ2). (6)

Thus each ensemble member contributes a Gaussian kernel centred at xi−µ.
Here µ is an offset, which accounts for any systematic “bias”. For a Gaus-
sian kernel, the kernel width σ is simply the standard deviation determined
empirically as discussed below.

For any finite ensemble, there remains the chance of ∼ 2

N
that the out-

come lies outside the range of the ensemble even when the outcome is selected
from the same distribution as the ensemble itself. Given the nonlinearity
of the model, such outcomes can be very far outside the range of the en-
semble members. In addition to N being finite, in practice, of course, the
simulations are not drawn from the same distribution as the outcome as
the ensemble simulation system is not perfect. To improve the skill of the
probabilistic forecasts, the kernel dressed ensemble may be blended with an
estimate of the climatological distribution of the system (see Bröcker and
Smith (2007) for more details, Roulston and Smith (2003) for an alternative
kernels and Raftery et al. (2005) for a Bayesian approach). The blended
forecast distribution is then written as

p(·) = αpm(·) + (1− α)pc(·), (7)

where pm is the density function generated by dressing the model ensemble
and pc is the estimate of climatological density. The blending parameter α
determines how much weight is placed in the model. Specifying the three
values (kernel width σ, kernel offset µ and weight α) at each lead time defines
the forecast distribution. These parameters are fitted simultaneously by
optimising the empirical Ignorance score, using a cross-validation protocol9

as described in Appendix B.

B Information Contamination and Cross-validation

Ideally, forecast performance is evaluated “out-of-sample”, with new data
unknown at the time the model parameters where determined (much less

9As only 46 years of data are used in this case, any estimation of the two parameters
lacks robustness. If one has 4000 years of data, one could draw multiple 46-year data sets
from them and estimate the parameters for each sample set. In experiments with simple
systems, it turns out that the variation of such estimates is large (see Smith et al. (2013)).
Note that a 46 year hindcast archive of the full ensemble system may not be available to
aid the construction of operational forecast systems.
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data seen by the analyst). Given a large forecast-outcome archive, cross-
validation reduces information contamination and over-fitting when working
in-sample (that is, when evaluating a model on the sample used to fit the
parameters of that model) by dividing the archive into two sets. A training
set, used to build the forecast model and fit the parameters, and a testing
set, used to get an estimate the skill and likely performance of the model.
The process can be repeated to examine the robustness of the results, but
information from the test set(s) must not be used to improve the forecast
model. When the archive is small and will increase only slowly, one does
not have the luxury of this approach. Calibration and evaluation are at
best performed under more complex cross-validation; the ideal protocol is
not clear and the results can be expected to change with the protocol. A
median protocol and a true leave-one-out protocol are defined below.

First, define the forecast probability distribution to be p(x,Xt,Θ), t =
1, ..., N , where X represents the ensemble forecast at time t, Θ represents
a vector of parameters (including the kernel width σ, offset µ and blending
parameter α) to be fitted and N is the number of forecasts. The correspond-
ing outcomes are defined to be st. For each forecast at time j = 1, ..., N ,
leave out one pair of forecast-outcome data (Xj , sj) and use the remaining
forecast-outcome data pairs to determine the parameter Θj by minimizing
the empirical score (in this paper Ignorance is used). The median value, Θ̄,
of the set of N Θj is then used in the forecast model. This “median protocol”
maintains a large learning set with only slight information contamination.

The leave-one-out protocol described in the previous paragraph is not
pure cross-validation as Θ̄ arguably contains information from every (Xj , sj)
when the median is taken. To achieve pure cross-validation, the following
protocol is adopted. For each forecast at time j, first leave out (Xj , sj), then
for the remaining set apply the median cross-validation protocol described
above to obtain N parameter values Θ̄j . The value Θ̄j at each time j is
then independent of (Xj , sj). The forecast empirical Ignorance is then given

by
∑N

j=1
− log2 p(sj , Xj , Θ̄j). This protocol ensures that the parameters

Θj have no explicit dependence on the datum used to evaluate them at
the cost of a smaller learning set(s). Even in this case, the datum was
known to the analyst. Indeed, use of a common archive in DEMETER
and in ENSEMBLES (Stream Two) clouds the possibility of assigning clear
statistical significance to estimates of expected skill.
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Figure 2: Ignorance score of each model from ENSEMBLES for the Nino3.4
index relative to climatology as a function of lead time in months. The
four different panels show the hindcasts initialized in (a) February, (b) May,
(c) August and (d) November. Zero Ignorance indicates a model has no
skill relative to climatology and negative relative Ignorance scores suggest
a model is more skillful than climatology. Bootstrap resampling intervals
(the vertical bars) reflect the 5% to 95% range as estimated from 512 re-
samples. All models show significantly more skill than climatology up to a
lead time of five months, regardless of when the forecasts are launched. For
the November launch (d) the bootstrap resampling intervals often cross the
zero skill line beyond a lead time of six months.
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Figure 3: Ignorance score of each model from ENSEMBLES for the MDR
index relative to climatology as a function of lead time in months. The
four different panels show the hindcasts initialized in (a) February, (b) May,
(c) August and (d) November. Zero Ignorance indicates a model has no
skill relative to climatology and negative relative Ignorance scores suggest a
model is more skillful than climatology. Bootstrap resampling intervals (the
vertical bars) reflect the 5% to 95% range as estimated from 512 resamples.
Significant skill above climatology is demonstrated for most models and
launch dates at early lead times (up to six months for the February launches,
for example), with the exception of the November forecast launches, where
the bootstrap intervals overlap the zero-skill climatology beyond a lead time
of two months.
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Figure 4: Ignorance score of the ENSEMBLES model forecasts for the
Nino3.4 index relative to the IFS(ECWMF) model as a function of lead
time in months. Zero Ignorance indicates a model has no skill relative to the
IFS(ECMWF) model and negative relative Ignorance scores suggest a model
is more skillful than the IFS(ECMWF) model. Bootstrap resampling inter-
vals (the vertical bars) reflect the 5% to 95% range as estimated from 512
resamples. All models shown are typically less skillful than IFS(ECMWF)
at all lead times and for most forecast launch dates. For launch dates in
August, however, the IFS(ECMWF) model is shown neither to perform
significantly better nor significantly worse than HadGEM2(UKMO) and
ECHAM5(INGV).
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Figure 5: Ignorance score of each model from DEMETER for the Nino3.4
index relative to climatology as a function of lead time in months. Zero Ig-
norance indicates a model has no skill relative to climatology and negative
relative Ignorance scores suggest a model is more skillful than climatology.
Bootstrap resampling intervals (the vertical bars) reflect the 5% to 95%
range as estimated from 512 resamples. All models, with the exception
of ECHAM5(MPI) are significantly more skillful than climatology at most
lead times, particularly for forecasts launched in August and November. At
lead times beyond four months, for forecasts launched in November, the
ECHAM5(MPI) model is given zero weight when blended with the climato-
logical distribution.
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Figure 6: Ignorance score of each model from ENSEMBLES for the Nino3.4
index relative to the corresponding DEMETER forecasts as a function of
lead time in months. Zero Ignorance indicates an ENSEMBLES model has
no added skill relative to the corresponding DEMETER model and negative
relative Ignorance scores suggest the ENSEMBLES model is more skillful
than that of the corresponding DEMETER model. Bootstrap resampling
intervals (the vertical bars) reflect the 5% to 95% range as estimated from
512 resamples. The ENSEMBLES models typically demonstrate improve-
ments, of up to one bit in some cases, over their corresponding DEMETER
models. ECHAM5(INGV) is an exception to this improvement and is shown
to perform worse in ENSEMBLES than its DEMETER model version.
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Figure 7: Ignorance score of each model from ENSEMBLES for the Nino3.4
index relative to persistence forecasts as a function of lead time in months.
The four different panels show the hindcasts initialized in (a) February, (b)
May, (c) August and (d) November. Scores below zero indicate that an
ENSEMBLES model is more skillful than the persistence forecasts. Boot-
strap resampling intervals (the vertical bars) reflect the 5% to 95% range
as estimated from 512 resamples. ENSEMBLES model forecasts launched
in February are shown to be more skillful than persistence at all lead times,
whereas for forecasts launched in August the models are significantly worse
than persistence at early lead times.
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Figure 8: Ignorance score of each model from ENSEMBLES for the MDR
index relative to persistence forecasts as a function of lead time in months.
The four different panels show the hindcasts initialized in (a) February, (b)
May, (c) August and (d) November. Scores below zero indicate that an
ENSEMBLES model is more skillful than the persistence forecasts. Boot-
strap resampling intervals (the vertical bars) reflect the 5% to 95% range
as estimated from 512 resamples. While there is a tendency for Ignorance
score remain negative for several months in a row, suggesting skill, the upper
(95%) resampling bound is almost always greater than zero.
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Figure 9: (a) Ignorance of the IFS(ECMWF) model as a function of lead
time in months for the Nino3.4 index. The green (red) lines represent the
skill of a subset of four-member (two-member) ensemble forecasts relative to
the full nine-member ensemble forecast. Each four-member and two-member
ensemble consist of random draws from the original nine-member ensemble;
(b) Average Ignorance of all possible combinations of two-member (red) and
four-member (green) ensembles. On average the four-member ensembles are
more skillful than the two-member ensemble, while both ensemble sizes are
shown to perform worse on average than the full nine-member ensemble
(that is Ignorance score are all above zero).
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(a) 4−member ensemble
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(b) 9−member ensemble

Figure 10: Ignorance of multi-model forecasts as a function of lead time
in months for the Nino3.4 index, launched in November, relative to the
nine-member IFS(ECMWF) forecast. The blue line represents the multi-
model forecast using all 36 ensemble members from the four ENSEMBLES
models, equally weighted. The red lines are multi-model forecasts using
randomly drawn combinations of four-members (a) and nine-members (b)
from the full ensemble. The four-member multi-model forecasts are shown
to perform substantially worse than the nine-member IFS(ECMWF) ensem-
ble (that is Ignorance scores are often above zero) and worse than the full
36-member multi-model ensemble. The nine-member multi-model forecasts
perform better in general than the four-member forecasts, and to a simi-
lar level of skill as the nine-member IFS(ECMWF) ensemble at lead times
beyond eight months.
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Figure 11: Ignorance score of each model from ENSEMBLES relative to
climatology as a function of lead time in months using true cross-validation
for, (a) forecasts of the Nino3.4 index and (b) forecasts of the MDR index
launched in November. Zero Ignorance indicates a model has no skill rela-
tive to climatology and negative relative Ignorance scores suggest a model is
more skillful than climatology. Bootstrap resampling intervals (the vertical
bars) reflect the 5% to 95% range as estimated from 512 resamples. Skill
is typically reduced compared to the median cross-validation protocol (Fig-
ures 2d and 3d), particularly at very early lead times over the MDR. The
bootstrap resampling intervals are also widened in some cases.
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Figure 12: Comparison of Ignorance scores for the IFS(ECMWF) model
from ENSEMBLES relative to climatology using the median and true cross-
validation protocols for forecasts of the Nino3.4 index, launched in the
months as indicated. On average the true cross-validation protocol shows
a reduction in skill (larger Ignorance scores) compared to median cross-
validation, although individual forecasts can score better. The reduction
of skill when using the true cross-validation protocol is most prominent at
higher values of Ignorance (when the forecasts are already demonstrating
poor skill under the median cross-validation protocol), which for the Novem-
ber launch typically occurs at longer lead times (beyond seven months).
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