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Abstract
The skill of probability forecasts of the temperature at Nino 3.4 based upon the ENSEMBLES seasonal simula-

tions is considered and contrasted with those of the DEMETER simulations. This poster addresses the problem of
interpreting probability forecasts based on these multi-model ensemble simulations; the distributions considered are
formed by kernel dressing the ensemble and blending with the climatology. The sources of apparent (RMS) skill in
distributions based on multi-model simulations is discussed, and it is demonstrated that the inclusion of “zero-skill”
models in the long range can improve RMS scores, casting some doubt on the common justification for the claim that
all models should be included in forming an operational PDF. It is argued that the rational response varies with lead
time

1 From Simulation to a PDF

A given ensemble of simulations is translated into a probability distribution function by a combination
of kernel dressing and blending with climatology [4]. Given an N member ensemble at time t, Xt =
[x1

t , ..., x
N
t ], and treating ensemble members under the same model as exchangeable, kernel dressing

defines the model-based component of the density as:

p(y : X, σ) =
1

Nσ

N
∑

i

K

(

y − xi
− u

σ

)

, (1)

where K is a kernel. Here we take

K(ζ) =
1

√

2π
exp(−

1

2
ζ2), (2)

where y is a random variable corresponding to the density function p. In this case each ensemble member
contributes a Gaussian kernel centred at xi + u, where u is an offset accounting for systematical bias.
The kernel width, σ, is simply the standard deviation of the Gaussian kernel.

For any finite ensemble, the verification may lie far from the ensemble members even if the verification
is selected from the same distribution as the ensemble itself. Blending the most relevant climatolog-
ical distribution of the system with the model-based distribution yields a probability forecast usually
superior to that obtained without blending. The eventual forecast distribution is then:

p(·) = αpm(·) + (1 − α)pc(·) (3)

where pm is the density function generated by dressing the ensemble and pc is the estimate of clima-
tological density.

To produce the forecast distribution requires estimation of the kernel width σ the shifting parameter
u and the weight α assigned to the model. We fit these three parameters simultaneously by optimising
the Ignorance score, introduced below, by leave one out cross validation 1.

2 Contrasting ENSEMBLES & DEMETER

The performance of forecast distributions is evaluated primarily using the “log p score” (Ignorance
Score [2]). The Ignorance Score is defined by:

S(p(y), Y ) = −log(p(Y )), (4)

where Y is the verification. Ignorance is the only proper local score for continuous variables [1,3]. In
practice, given K forecast-verification pairs (pt, Yt, t = 1, ..., K), the empirical average Ignorance skill
score is:

SEmp(p(y), Y ) =
1

K

K
∑

i=1

−log(pi(Yi)) (5)

We evaluate the ENSEMBLES & DEMETER seasonal models [5] by their empirical Ignorance score.
From Fig 1. In general, both IFS(ECMWF) model and HadGem2(UKMO) model tend to outperform
other models in the ENSEMBLES project. ECHAM5(INGV) model seems doing very well in the

1As only 42 years data are provided, the estimation of these two parameters is lack of robustness. If one has 4000 years data, one can draw

multiple 42 years data set from them and estimate the parameters for each sample set. The variation of the estimates is large.

DEMETER project. By looking at the relative Ignorance between ENSMEBLE and DEMETER model
outputs, it seems except the ECHAM5(INGV) model, all other three models have made improvement
in terms of Ignorance.
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Fig 1: Ignorance score of each model forecast of SST in the nino3.4 region as a function of lead
time. The uncertain bars are the 90 percent bootstrap re-sampling bounds, calculated from 512
bootstrap re-samples. Figures in the first row represent Ignorance of each model from ENSEM-
BLES project relative to climatology, each picture corresponding each launch date; the second
row represents Ignorance of each model from DEMETER project relative to climatology; the third
row shows the Ignorance score of ENSEMBLES forecast relative to corresponding DEMETER
model forecast (ECHAM5(IFMK) is compared with ECHAM5(MPI)).

3 The meaning of the (ensemble) mean and value of large

ensembles

It is often said that the ensemble mean outperforms the best model. The right panel in Fig. 2 shows
that at large lead times merely decreasing the variance of the IFS(ECMWF) forecast improves the
RMS skill. In this case including zero skill forecasts (with zero mean error) would appear to improve
the score! While at short lead times (where the ensemble has more significant skill) decreasing the
variance increases the RMS error. This casts doubt on the utility of RMS error measures. The left
panel in Fig 2. suggests that multi-model ensemble really does contribute skill.
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Fig 2: a) Ignorance score of i) IFS(ECMWF) ensemble ii) IFS(ECMWF) ensemble mean
iii) Multi-model (Including the four models in Fig 1) ensemble mean iv) Multi-model ensemble,
forecast for Nov launch, relative to climatology. b) RMS error for the forecast using IFS(ECMWF)
ensemble mean with their variance shrunk.

The seasonal ensembles within the ENSEMBLES project each consist of nine members, decreasing the
ensemble degrades forecast skill, as shown in Fig. 3 where skill of two member (red) and four member
(green) ensembles are shown relative to the full nine member ensemble.
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Fig 3: Ignorance score of IFS(ECMWF) model forecast of SST in the nino3.4 region as a
function of lead time. The green lines represents the Ignorance of 4 member (random drawn from
the original 9 member ensemble) ensemble forecasts relative to 9 member ensemble forecast; the
red lines 2 member ensemble forecasts

4 Constructing PDFs from multiple models

Each model provides a distribution of simulations: how do we best combine them without over-fitting
given that we have only 50 independent launches? Fig. 4 illustrates that that such combinations
will be lead-time dependent. At shorter lead times, where the better models have significantly more
skill, combining only one or two of the best models does well, while including all models does poorly
in months one to eight, and then arguably outperforms the other combination in months ten through
fourteen.
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Fig 4: Ignorance score of multi-model forecasts of Nino3.4 SST as a function of lead time.
Multi-model forecasts are constructed by assigning equal weights on each model forecast PDF.

Summary

The current generation of seasonal forecasts will retire before the forecast-verification archive gets
significantly larger: seasonal verification data is precious. ENSEMBLES-based PDFs have skill at 14
months lead-time, a skill significant improvement on the DEMETER models. Different skill scores can
obscure real skill from proper scoring rule from mere statistical effects reflected in RMS scores. The
evidence of skill at long lead-times is of nontrivial value in various applications, and distinguishing the
limitations of this skill for decision making from the limitations of our current skill scores will prove of
great value.
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