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Abstract

This poster addresses issues in the interpreting of probability forecasts
based on multi-model ensemble simulations. Probabilistic skill in EN-
SEMBLES seasonal forecasts for Nino 3.4 is demonstrated. True cross-
validation is shown to be important given the small sample size avail-
able in seasonal forecasting. The sources of apparent (RMS) skill in
distributions based on multi-model simulations is discussed, and it is
demonstrated that the inclusion of “zero-skill” models in the long range
can improve RMS scores. This casts some doubt on one common justi-
fication for the claim that all models should be included in forming an
operational PDF. RMS “skill” is shown to be misleading. Results using
a proper skill score show the multi-model ensembles do not significantly
outperform a single model ensemble for Nino 3.4.

Evaluating ENSEMBLES

with a Proper Score

The performance of forecast distributions can be evaluated with the
“log p score” (Ignorance Score [2]), defined by:

S(p(y), Y ) = −log(p(Y )), (1)

where Y is the verification and p is forecast probabilistic density func-
tion. Ignorance is the only proper local score for continuous variables
[1,3]. In practice, given K forecast-outcome pairs (pt, Yt, t = 1, ..., K),
the empirical average Ignorance skill score is:

SEmp(p(y), Y ) =
1

K

K
∑

i=1

−log(pi(Yi)) (2)

We evaluate the ENSEMBLES models [5] by their empirical Ignorance
score. A bootstrap resampling procedure which samples the forecast
Ignorance score with replacement is used to reflect the uncertainty in
the empirical Ignorance. In general, all models (Fig. 1) are substan-
tially more skillful than climatology in predicting short lead times for
all initialization dates. Although less information is provided in the
longer lead time, they still add significant information to the climatol-
ogy up to a lead time of 14 months. On average, the IFS(ECMWF)
and HadGem2(UKMO) models score best.
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Fig 1: Ignorance score of each model forecast of SST in the Nino3.4 region
as a function of lead time. The uncertain bars are the 90 percent bootstrap
re-sampling bounds, calculated from 512 bootstrap re-samples. Ignorance of
each model from ENSEMBLES project relative to (monthly) climatology is
represented, each picture corresponds to a different launch date.

The meaning of the (ensemble) mean

and value of multi-model ensembles

It is often suggested that the multi-model mean is more skillful than
the best ensemble forecast [6]. This statement requires a careful exam-
ination of the definition of skill. The RMS error of the ensemble mean,
for example, can be a very misleading measure of forecast skill. This is
demonstrated in Fig. 2 where we compare the IFS(ECMWF) ensemble
mean November forecast with forecasts in which we simply reduce the
variance of the ensemble mean forecasts over all forecast years for each
lead time; this can be seen as adding “an ensemble” of random numbers
with zero mean to each forecast. Fig. 2a shows including such zero skill
forecasts would improve the RMS score! At short lead times (where the
ensemble has significant skill) decreasing the forecast variance increases
the RMS error. The Ignorance score reveals that the actual forecast
skill (the probability on the outcome) is not improved by including a
zero skill forecast (see Fig. 2b). The problem here is with RMS error
measures.

Fig. 2c shows the standard deviation of the ECWMF and multi-model
ensemble mean as a function of lead time. The variance of the multi-
model ensemble actually becomes smaller than that of ECMWF en-
semble after a lead time of 8 months. Simply this fact, in the same
fashion as above, could show increased “RMS skill” of the multi-model
mean, even if the other models provide no additional skill (information
regarding the outcome).
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Fig 2: a) RMS error for the forecast using IFS(ECMWF) ensemble mean
with reduced variance. b) Ignorance score for forecast using IFS(ECMWF)
ensemble mean with reduced variance. c) standard deviation of Multi-model
and IFS(ECMWF) ensemble mean as a function of lead time

Does one gain more information from increasing the number of ensem-
ble members from a good model, or, combining the forecasts of dif-
ferent models to a multi-model ensemble? Fig. 3 shows the Ignorance
score of multi-model forecasts with various ensemble sizes relative to
the full 9-member ECWMF forecast (zero line). The full multi-model
ensemble (with all 36 members from simulations of the IFS(ECMWF),
HadGem2(UKMO), ECHAM5(IFMK) and ARPEGE(CNRM) models,
blue line in Fig. 3 outperforms the 9-member ECMWF ensemble in
longer lead times while under-performs in short lead times. To com-
pare ensemble of the same size, multi-model ensembles with smaller
number of ensemble members are generated by random draws (without
replacement) from all 36 simulations. The 9-member ECMWF forecast
outperforms 4-member multi-model ensembles significantly in short lead
time and often at longer lead times (Fig. 3a). Comparing like with like
9-member ensembles, the single-model ECMWF forecast outperforms
the multi-model forecast most of the time (Fig. 3b). We see no evidence
that multi-model ensembles significantly outperform a single model en-
semble of the same size.
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Fig 3: Ignorance of multi-model forecasts of various ensemble sizes relative to
the 9-member ECMWF November forecast for the Nino3.4 index. The blue line
represents the multi-model forecast using all 36 ensemble members (including
ECMWF). The red lines are multi-model forecasts using random combinations
of 4-members (left) or 9-members (right) from the full ensemble. The dashed
line of zero represents the 9-member ECMWF forecast.

True cross-validation when

data is precious

When the forecast-outcome library is small, misleading expectations of
out-of-sample performance can arise due to “informative contamina-
tion”. Maintaining true cross-validation is critically important. The
results presented above adopt the leave one out cross-validation (de-
scribed below) to fit the offset u, the kernel width σ and the weight
assigned to the model α. Forecast details in the appendix are given.

In short, define the forecast probability distribution to be p(·, Xt, Θ)t =
1, ..., N , where X represents the ensemble forecast at time t, vector Θ
contains u,σ and α and N is the number of forecasts. Given the corre-
sponding outcome st, for each forecast at time j, we leave out (Xj, sj)
and using the rest of the data to fit the parameter Θ by minimizing
the empirical score. Let the fitted value to be Θ̂j. We use the me-

dian of those fitted values (noted Θ̃) to compute the forecast empirical

Ignorance, i.e.
∑N

j=1−log2p(sj, Xj, Θ̃).

The leave one out procedure described in the previous paragraph does
not provide true cross-validation, as Θ̃ is not completely independent of
(Xj, sj). To achieve true cross-validation, one can adopt the procedure
described as follows. After firstly leaving out (Xj, sj), for the remaining
set one apply the leave one out procedure again to obtain the fitted
parameter values Θ̃j for the archive that does not contain (Xj, sj).

Now Θ̃j is independent with (Xj, sj).

Fig. 4 shows the relative Ignorance using true cross-validation; the boot-

strap resampling bars tend to be wider. Arguably there is no statistical
significant skill after lead time 8. Fig. 4b quantifies the apparent “loss
of skill”, which is in fact false skill, and may lead to over confidence.
Finding an ideal cross-validation procedure requires further investiga-
tion. Using true cross-validation indicates using less informative model
as one put less data to build the model. In practice one will use all
the previous years forecasts to forecast next year, while using all the
previous forecasts in-sample yields over confidence.
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Fig 4: a)Ignorance score of ECMWF ensemble forecasts relative to climatol-
ogy using truly leave one out cross-validation, b) Ignorance score of ECMWF
ensemble forecasts, true leave-one-out cross-validation relative to leave one out
cross-validation.

Summary

The current generation of seasonal forecasts will retire before the
forecast-outcome archive grows significantly: seasonal forecast-outcome
data is precious. ENSEMBLES-based PDFs have probabilistic skill at
long lead times. Using RMS as a measure of skill can obscure true skill
with mere statistical effects. The evidence of skill at long lead-times is
of nontrivial value in various applications, and distinguishing the limita-
tions of this skill for decision making from the limitations of our current
skill scores may prove of value.

Appendix: From Simulation to a PDF

A given ensemble of simulations is translated into a probability distribution function
by a combination of kernel dressing and blending with climatology [4]. Given an N

member ensemble at time t, Xt = [x1

t , ..., x
N
t ], and treating ensemble members under

the same model as exchangeable, kernel dressing defines the model-based component
of the density as:

p(y : X, σ) =
1

Nσ

N
∑

i

K

(

y − xi
− u

σ

)

, (3)

where K is a kernel. Here we take

K(ζ) =
1

√

2π
exp(−

1

2
ζ2), (4)

where y is a random variable corresponding to the density function p. In this case
each ensemble member contributes a Gaussian kernel centred at xi + u, where u is an
offset accounting for systematical bias. The kernel width, σ, is simply the standard
deviation of the Gaussian kernel.

For any finite ensemble, the verification may lie far from the ensemble members even
if the verification is selected from the same distribution as the ensemble itself. Blend-
ing the most relevant climatological distribution of the system with the model-based
distribution yields a probability forecast usually superior to that obtained without
blending. The eventual forecast distribution is then:

p(·) = αpm(·) + (1 − α)pc(·) (5)

where pm is the density function generated by dressing the ensemble and pc is the
estimate of climatological density. The parameter α reflects the contribution of the
model to the forecast.

To produce the forecast distribution requires estimation of the kernel width σ the
shifting parameter u and the weight α assigned to the model. We fit these three
parameters simultaneously by optimising the Ignorance score, introduced below, by
leave one out cross-validation (discussed in the poster).
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