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Nonlinear aspects of modelling crop yield on

seasonal timescales

Sarah M W Higgins

Abstract

This Thesis examines the main issues surrounding crop modelling by detailed

studies of (i) multi-model ensemble forecasting using a simple dynamical sys-

tem as a proxy for seasonal weather forecasting, (ii) probabilistic forecasts

for crop models and (iii) an analysis of changes in US yield. The ability

to forecast crop yield accurately on a seasonal time frame would be hugely

bene�cial to society in particular farmers, governments and the insurance in-

dustry. In addition, advance warning of severe weather patterns that could

devastate large areas of crops would allow contingency plans to be put in

place before the onset of a widespread famine, potentially averting a human-

itarian disaster.

There is little experience in the experimental design of ensembles for sea-

sonal weather forecasting. Exploring the stability of the results varying, for

example, the sample size aids understanding. For this a series of numerical

experiments are conducted in an idealised world based around the Moran

Ricker Map. The idealised world is designed to replicate the multi-model

ensemble forecasting methods used in seasonal weather forecasting. Given
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the complexity of the physical weather systems experiments are instead con-

ducted on the Moran Ricker Map [56,70]. Additionally, experiments examine

whether including climatology as a separate model or blending with clima-

tology can increase the skill.

A method to create probabilistic forecasts from a crop model, the Crop

Environment Resource Synthesis Maize model (CERES-Maize) [19, 37] is

proposed. New empirical models are created using historical US maize yield.

The skill from equally weighting the crop model with a simple empirical

model is investigated.

Background reviews of weather and yield data is presented in new ways for

the largest maize growing state Iowa. A new method separating the impacts

of favourable weather from technology increases in a crop yield time series

is explored.
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Chapter 1

Introduction to dynamical

systems and crop modelling

1.1 Introduction

This thesis examines the main issues surrounding crop modelling by detailed

studies of (i) multi-model ensemble forecasting using a simple dynamical

system as a proxy for seasonal weather forecasting, (ii) probabilistic forecasts

for crop models and (iii) an analysis of the changes in US yield. The ability

to forecast crop yield accurately on a seasonal time frame would be hugely

bene�cial to society in particular farmers, governments and the insurance

industry. It would also be of use in businesses such as transport, commodity

trading and food services. In addition, advance warning of severe weather

patterns that could devastate large areas of crops would allow contingency

plans to be put in place before the onset of widespread famine, potentially
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1.1. Introduction

averting a humanitarian disaster.

The thesis is divided into four main sections. All underlined words are de-

�ned in the glossary. In Chapter 2 the experimental design of the state

of the art forecasting methods, multi-model ensemble forecasting [31, 60],

currently in use by seasonal weather is investigated. The experiments ex-

plore the limitations from working with a small forecast-outcome archive

and how the skill of a probabilistic forecast is improved using climatology

when a large forecast-outcome archive is available. In Chapter 3 probabilis-

tic forecasts for crop modelling are considered using the Crop Environment

Resource Synthesis Maize model (CERES-Maize) [19,37]. A study examines

if equally weighting the CERES-Maize model with an empirical model can

increase the skill of these probabilistic forecasts. In crop modelling the fo-

cus is on maize in the US, where data is freely available. In Chapter 4 the

meteorological observations, yield observations and technical advancements

are analysed. Finally, in Chapter 5 how to capture the uncertainty in a crop

forecast is considered by creating an ensemble of weather realisations. Cur-

rently the CERES-Maize model uses just one realisation of weather to make

a forecast. In this chapter a nine member ensemble is generated to re�ect the

sampling uncertainty in the original realisation of weather. In future work

this ensemble will be used to create a probabilistic forecast for yield for the

CERES-Maize model.

In this chapter an outline is given for topics relevant to thesis. The di�erent

types of crop models available to forecast yield and the di�erences between

each type of model are given in Section 1.1.1. The main causes of variability
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in maize yield time series are discussed in Section 1.2. A review of the main

meteorological observations used by crop models and how these irregularly

spaced observations are converted into grids is given in Sections 1.3 and 1.4.

The CERES-Maize model [19, 37] is discussed in Sections 1.5 and 1.6. One

of the problems facing crop modelling is the variability in yield, some of

which is caused by weather and some by technical advancements. Section

1.7 provides a literature review on estimating the technical advancements in

the crop yield.

Using simple chaotic systems as a starting point to understand more complex

chaotic systems is a recognised and useful methodology [46,55]. In this thesis

a simple dynamical system is used as a means to explore issues for a more

complex dynamical system, seasonal weather. The dynamical system used

is the Moran Ricker Map [56,70], as explained in Section 1.8.

The true state of the dynamical system for seasonal weather is obscured

by observational uncertainty [41]. Additionally, there is uncertainty from

model inadequacy in the forecast state. Every model is imperfect [17, 26,

93, 96]. To provide a lower bound for these uncertainties, an ensemble of

initial conditions is used with a collection of models [17, 26, 93, 96]. Why

ensemble forecasting is used for chaotic systems is discussed in Section 1.9.

An important consideration there is how to convert an ensemble of estimates

into a probability distribution function. This is discussed in Section 1.10

[5, 79]. The skill is a measure of how accurate a probabilistic forecast is.

A skill score S(p(y), Y ) evaluates the forecast distribution p(y), against the

outcome Y [4]. The skill score used here is empirical Ignorance [25,72] which
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1.2. Maize yield time series

is explained in Section 1.11. Seasonal weather models and their multi-model

forecast-outcome archives are outlined in Section 1.12.

1.1.1 Di�erent crop model types

There are several distinct model types used to predict crop yields:

1. Physical simulation models. These models predict yield by repli-

cating the physical conditions that surround the crops [11, 19, 37, 38].

For example, the weather state, soil type and details about farm man-

agement are a sample of the inputs required by a crop model.

2. Indicator/Teleconnection models. These models look at the rela-

tionships between weather patterns and crop yield to forecast future

crop yield [9, 28]. For example, patterns in the El Ninõ-Southern Os-

cillation is used to predict crop yields in the United States (US) [28].

3. Empirical models. These models use historical crop yields to fore-

cast future crop yields. Empirical models typically do not consider

the underlying physical conditions which the crops to be forecast are

growing in.

In the next Section the US maize yield times series is examined along with

the main causes of variability within this time series.

1.2 Maize yield time series

The amount of maize grown each year in the US is measured in yield, where

yield is the number of bushels per harvested acre and a bushel weighs 56
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Figure 1.1: The US maize yield time series. The yield has signi�cantly increased
between the 1870s and 2012.

pounds. Maize yield is collated yearly at county level, a subdivision of a

state. The yield is collected by the United States Department of Agriculture

- National Agricultural Statistics Service (USDA-NASS) [78]. To calculate

state level yield the county level yields are weighted according to the size of

the harvested area for each county with respect to the harvested area for the

state.

As maize yield only records bushels per harvested acre, it does not capture

the full impact of weather on maize [42]. Unfavourable weather sometimes

causes maize to be replanted, and this is not be re�ected in the yield values.

Although we are aware of this, in this thesis yield is the measure we use.
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1.2. Maize yield time series

The US national maize yield time series [78] (Figure 1.1) shows that maize

yield has risen signi�cantly. The amount of maize grown on one acre has

increased from 24.3 bushels per acre in 1866 to 158.8 bushels per acre in

2013. This rise in yield is caused by technical advancements in seed genetics,

fertilisers, crop management techniques and changes in land use [27, 29, 87].

Despite all these improvements crop yield is still signi�cantly dependent

on weather which a�ects both the quantity and quality of harvested crops;

though only quantity is easily measured [43]. In e�ect the time series of

the yield has two causally separate components, a non-linear increase over

time caused by the technical advancements and yearly variability caused by

�uctuations in weather [101]. Accounting for the technical advancements in

yield time series is di�cult due to its non-linearity. Presently the increase in

US maize yield due to technical advancements is slowing down or stagnating

[40,68].

Examining the maize yield in Figure 1.1 shows that the biggest deviations

are large downward swings followed by a retracement in the following year.

These large downward swings seen in the years 1983, 1988, 1993 and 2012 are

due to the weather creating adverse growing conditions, mainly drought [57].

An exception is 1993 when very wet weather caused the crops to rot in their

�elds [57]. To understand the limitations of any model, an understanding

about the amount of uncertainty in the model inputs is required. In the next

section the observational uncertainty found in meteorological observations is

examined and the causes of this uncertainty reviewed.
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1.3 Meteorological observations

Accurate and widespread meteorological observations are useful to under-

stand weather's impact on crop yield [43]. The United States Historical Cli-

matology Network (USHCN) monitor and manage weather stations through-

out the US [52]. All the USHCN weather stations have long time series of

meteorological observations that are checked for quality. The daily observa-

tions recorded by the USHCN are:

1. tmin : the lowest temperature (◦C) at ground level

2. tmax : the highest temperature (◦C) at ground level

3. prec: the amount of precipitation (mm/day) at ground level

4. snow: the amount of snow (mm/day) at ground level

Daily meteorological observations are checked by USHCN for obvious errors,

for example tmin cannot be higher than tmax in a day [50]. Any problems

found have error �ags which show what is wrong with the observation. Error

�ags attached to meteorological observations are examined in Section 4.1.

Despite these quality checks, time series of daily meteorological observations

still contain systematic biases and step changes caused by inconsistent mea-

suring conditions [15, 49, 51]. A gradual change to the time of observa-

tion from the afternoon to the morning has introduced systematic positive

bias [51]. Ideally the daily meteorological observations should be measured

at midnight. As the USHCN network of weather stations is run by volun-

teers, who historically had to manually read the meter, reading the meter
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1.3. Meteorological observations

at midnight was not possible. A manual adjustment is made to account for

the time of observation bias. Baker [3] compared the e�ect of the times of

the observations on the monthly means by comparing the actual means (i.e.

the monthly mean temperature when the time of observation is at midnight)

against the mean temperatures when the time of observations were taken

for every hour. Baker demonstrated that the time of observation made a

signi�cant di�erence to the monthly means. Positive deviations from the

mean were found when the time of observation was between 10 am and 11

pm, with the largest positive deviation at 3 pm. Negative deviations were

found when the time of observation was between midnight and 8 am with

the largest negative deviation at 5 am. Additionally changes to the metering

equipment and location of the weather stations caused step changes in the

time series [51].

Although the monthly time series have been adjusted to account for these

inconsistencies, they are still contained in the daily time series [52]. There

are further problems with the siting of the weather stations. For example

some weather stations are located close to heat sources so the temperature

observations are contaminated [21]. The observational uncertainty within

the meteorological observations is discussed further in Section 4.2.

Although the USHCN has a wide network of weather stations, it does not

have a weather station in every county. For example in the state of Iowa there

are 99 counties but only 23 weather stations (see Section 4.1.1). Gridded

meteorological data is used by the crop model. The next section examines

how meteorological observations from irregularly spaced point locations are
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turned in to regularly spaced gridded data.

1.4 Gridded meteorological data sets

The CERES-Maize model provides estimates for maize yield over large areas,

for this it requires gridded meteorological data as an input [19]. The gridded

data sets are either derived directly from meteorological observations or from

reanalysis data.

1. Gridded precipitation: This is directly from ground level observa-

tions made into a 0.25◦ by 0.25◦ grid by the Climate Prediction Centre

(CPC) Uni�ed Rain Gauge Database [33].

2. Gridded temperature: Gridded tmin and tmax are from reanalysis

data by The National Centres of Environmental Prediction (NCEP)

North American Reanalysis (NARR) [53]. The NCEP-NARR supplies

gridded tmin and tmax 2 m above ground on a 0.3 ◦ by 0.3 ◦ grid.

3. Gridded solar radiation: This is reanalysis data from NASA [84],

it is on a grid of size of 1 ◦ by 1 ◦ at ground level.

The meteorological observations are recorded at irregularly spaced weather

stations across wide areas. To convert these observations into a regularly

spaced grid a data interpolation scheme is applied. These data interpolation

schemes give a higher weighting to observations which lie closest to the grid

point [53].
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Reanalysis data is created from historical meteorological observations (in-

cluding some from the USHCN weather stations discussed above) and the

most recent seasonal weather model, currently the community climate sys-

tem model 3 from the National Centre for Atmospheric Research (NCAR

CCSM3) [13, 53]. The meteorological observations are checked against the

physics of the seasonal weather model. Using a combination of both the

physics of the model and the meteorological forecast, gridded reanalysis data

is created. To improve consistency across the reanalysis data the most recent

seasonal weather forecast model is used across the whole time series.

A more detailed description of how these gridded data sets are generated is

given in Appendix A. In the next Section the physical simulation crop model

used in this thesis, the CERES-Maize model, and the inputs required by this

model are discussed.

1.5 The crop model

The CERES-Maize model, one part of the parallel decision support sys-

tem for agrotechnology transfer (pDSSAT) [37], [19], is a modular system.

CERES-Maize is a physical simulation model which produces large scale

estimates for maize yield by country, state and county level. To run the

CERES-Maize model, modules for weather, soils and farm management are

populated with data. The gridded meteorological data sets used by the model

are tmin, tmax, precipitation and solar radiation as discussed in Section 1.4

Further inputs are used by the crop model but these are not examined in

this thesis. Fixed soil parameters are taken from the Harmonized World
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Soil Database [22]. Information is needed about the farm management of

the crops such as planting and harvesting dates, the cultivars planted and

(for each cultivar) the speci�c crop phenology, the volume and timing of the

fertiliser application, whether the crops are irrigated and the row spacing.

The gridded meteorological data used by the CERES-Maize model needs to

be on a 0.5 ◦ by 0.5 ◦ scale. Gridded daily tmin and tmax are rescaled from a

0.3 ◦ by 0.3 ◦ grid by the CERES-Maize modellers using linear interpolation

before being used by the crop model. The precipitation (on a 0.25 ◦ by 0.25

◦ grid) is rescaled by the CERES-Maize modellers using resampling. Areas

over sea and water are masked.

Speci�c weather impacts on the development of maize are captured in the

CERES-Maize model. One of these is heat stress, a well known cause of crop

failure [30]. The model measures heat stress via the accumulation of growing

degree days (GDD). For each day d it tracks the maximum temperature

Tmax,d and the minimum temperature Tmin,d against the base temperature

of 10◦C, Tbase.

GDD =
n∑
d=1

(Tmax,d + Tmin,d)

2
− Tbase (1.1)

where n is the number of days in the growing season. Timing of heat stress in

the life cycle is important. Just a few hours of high temperature at a critical

time of maize development can cause a large negative impact on the yield. If

heat stress occurs at antithesis, when the maize is fully �owered, or when the

grain is growing during the reproductive phase it has large negative impacts
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1.5. The crop model

on maize yield. The model also tracks any stress caused by the length of the

photoperiods, water and nutrients.

The CERES-Maize model provides gridded large scale estimates of maize

yield on a 1
12
◦ by 1

12
◦ grid, where 1

12

◦
is about 10 kilometres. The outcomes

(the yield) are recorded by USDA-NASS at county level so the gridded yield

estimates have to be converted to irregular county shapes to be directly

comparable with the outcomes. To convert the gridded yield estimates to

county level yield estimates the CERES-Maize modellers weight the output

by harvested areas in each county. If a grid cell straddles two counties the

area of the grid cell in each county determines the amount of yield to include

for each county.

To account for technical advancements, the CERES-Maize yield estimates

need to be calibrated to the yield outcomes. To do this the CERES-Maize

modellers plot a simple linear regression through yield outcomes (Aout). Sep-

arately, a simple linear regression is plotted through the yield estimates

(Aest). The calibrated yield estimate (yi) for each year i is the uncalibrated

yield estimate (yunadj,i) plus the di�erence between Aout,i and Aest,i:

yi = yunadj,i + (Aout,i −Aest,i) (1.2)

An example of how a county in Iowa is calibrated is shown in Figure 1.2.

The red dotted line is the linear regression �tted to yield estimates from the

CERES-Maize model, the blue line is the linear regression �tted to the yield

outcomes. To calibrate the model the di�erences between the two linear
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Figure 1.2: To calibrate the model linear regressions are �tted to the uncalibrated
yield estimates (red dashed line) and yield outcomes (blue line) for a county in
Iowa.

regression lines are added to the model estimates. For example in year

2000 the di�erence between the two linear regressions, -10.5, is added to the

uncalibrated yield 121.26 to create a calibrated yield of 110.8 bushels/acre.

In the next section the CERES-Maize model and its weaknesses are reviewed.
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1.6 Primary weaknesses in CERES-Maize model

As with all model inputs, the input data contains uncertainty. This uncer-

tainty is introduced at several places; in initial conditions (see Section 1.3),

when irregular meteorological observations are gridded (see Section 1.4) and

when gridded data is rescaled for the model (see Section 1.5). The physical

location of weather stations can also introduce errors. If a weather station

is located in a county where maize is grown, it only measures the observa-

tions at that one point location whereas maize is grown over a large area.

The meteorological observations from one point within a county may di�er

signi�cantly from the actual meteorological state across the maize growing

area. This is particularly true with respect to precipitation which can be

extremely localised, and in regions with large topographical variations. The

impact of precipitation may be smoothed by irrigation, this is considered in

Section 4.4.3. Additionally the gridded tmin and tmax are estimated at 2 m

above ground, whereas maize is grown near ground level.

There are also uncertainties with the size and location of maize growing

areas [67] which can change over time. These changes, however, are not

available on a year by year basis [67]. How the model deals with the

technical advancements is another issue. The CERES-Maize model is cali-

brated using linear regressions (as previously discussed in Section 1.5). This

assumes that maize yield increases linearly over time, however there have

been concerns that the rate of technology increase is stagnating [40,68]. An

issue is whether this method will cause the CERES-Maize model to over

estimate future yield. In the next section the literature on how to estimate
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the technical advancements from the yield time series is reviewed.

1.7 The impact of technology advancements on the

yield time series

The main methods to estimate technical advancements from the yield time

series are outlined below. One of the simplest ways is to estimate the

technical advancements with a linear trend equation [86]:

yi = α0 + α1i+ ε (1.3)

where yi is the predicted yield for ith year, α0 and α1 are �xed parameters

and ε ∼ N(0, σ2) is the error term which is independent and identically

distributed (i.i.d.). This works well if the increase in the time series is linear,

however looking at Figure 1.1 the yield does not appear to be linear. There

is a sharp increase in yield from approximately the 1950s, caused by a step

change in technical advancements, also the variability seems to be increasing

with time. One option is to add an additional parameter (α2) for the yield

increase at this step change, and another parameter (α3) for a squared term

to account for possible non-linear changes in the yield [54]:

yi = α0 + α1i+ α2j + α3j
2 + ε, (1.4)
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1.7. The impact of technology advancements on the yield time series

where j =

0 i < 1950

i otherwise
(1.5)

where the additional terms from Equation 1.4 are j, which is set to zero before

the 1950s (although the exact change point would have to be calculated) and

ε ∼ N(0, σ2) is the error term which is i.i.d.

Yield time series can also account for technical advancements by basing the

yield on a certain year, although which method to use depends on whether

or not the variance (σ) is constant across all the years [9, 29]. Hansen [29]

suggested one way to deal with yield time trend. If the trend (ti) is a

parametric or a smoothing function of the time series and the time series is

stationary, an additive adjustment is used:

yi = yunadj,i + tb − ti (1.6)

where ti is the value of the trend function at the ith year and tb is the

value at the base year (b) and yi is the calibrated yield estimate for the ith

year. Hansen also suggested for non-stationary time series, a multiplicative

adjustment could be made [29]:

yi = yunadj,i
tb
ti

(1.7)

Hawkins [30] �tted a cubic regression spline which takes into account the non-

linear increase of technical advancements and the stagnation in crop yields

over the past decade. Other techniques used include a smoothing function
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which assumes technology as a low frequency component and weather as a

high frequency anomaly. Fourier analysis [28] and single spectrum analysis,

a type of principal component analysis [40] are examples of this method.

To avoid having to separate the technical advancements from the yield time

series a progressive-di�erence method [101] can be used. Yu [101] demon-

strated this with multiple regression analysis on rice yields using the consec-

utive di�erences between yearly yields and climatic factors (such as sunshine,

average air temperature and precipitation).

Most of these methods assume technical advancements cause a linear increase

in yield. Yield increase, however, is not always steady over time, sometimes

there are steep increases in yield. Additionally, yield increase is slowing down

or stagnating in some locations [40, 68], so an assumption of linearity is not

true.

A method to account for the technical advancements which considers the

non-linearity is proposed in this thesis in Section 4.5. In the next section

a simple dynamical system, the Moran Ricker Map is de�ned [56, 70], this

will be used as a tool to explore problems inherent in larger more complex

dynamical systems.

1.8 A chaotic system: Moran Ricker Map

A chaotic system is a dynamical system which is sensitive to initial conditions

[83]. This means that two almost identical initial conditions will on average

diverge exponentially over time [47]. The chaotic system used in this thesis
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Figure 1.3: Moran Ricker Map, the image of x̃0 when α = 3. Note that it is
bounded between 0 and 2.46.

is the Moran Ricker Map [56,70]:

xi+1 = xie
α(1−xi) (1.8)

The Moran Ricker Map has �xed points at x = 0 and x = 1 and is bound

between 0 and xmax = eα−1

α . The Moran Ricker Map when α is 3 is in Figure

1.3. For this �gure the initial condition, x̃0, is linearly spaced between 0 and

1. The image of the initial condition is f̃(x̃0). Integrated forward means

the initial conditions are run though the Moran Ricker Map to generate

outcomes. For each step integrated forward, the outcomes from the Moran
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Figure 1.4: Moran Ricker bifurcation diagram. Notice the �xed points at 0 and 1
and that when α = 3 the Moran Ricker Map is chaotic and bounded.

Ricker Map are used as initial conditions to be input again into the Moran

Ricker Map.

The bifurcation diagram in Figure 1.4 shows Moran Ricker Map values when

the parameter α varies between 2.5 and 3.5. The initial conditions, x̃0, are

integrated forward 512 steps through the Moran Ricker Map. The �xed

points at x = 0 and x = 1 are shown as straight horizontal lines, in this

parameter space they remain unchanged across all the values of α. When α

approaches ∼ 2.5 a period 2 orbit starts where the values alternate between

∼ 0.25 and ∼ 1.75, when α increases a period 4 orbit starts. As the period

of the orbit always increases by a factor of 2, it is called period doubling
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1.8. A chaotic system: Moran Ricker Map

bifurcation [81]. As the value of α increases the period doubling bifurcations

occur closer and closer together until eventually in�nite period doubling

bifurcations occur. There is however an area of stability (shown by the

white space) for higher values of α when the Moran Ricker Map returns to

a period 3 orbit before the period doubling bifurcations begin again.

The sensitivity to the initial conditions is measured as:

〈
‖ δx(t) ‖
‖ δx0 ‖

〉
X0

≈ eλt (1.9)

where the average is over points X0 on the attractor, x(t) is the value at

time t and λ is the separation of the trajectories of the system known as

the Lyapunov exponent [47]. Consider a one dimensional map (such as the

Moran Ricker Map) using two initial conditions at x̃0 and x̃0+ M x̃0, after

being integrated forward one step the separation would be:

M x1 = f̃(x̃0+ M x̃0)− f̃(x̃0) ≈M x0f̃ ′(x̃0) (1.10)

where f̃ ′ = df
dx . As the number of steps integrated forward through the

Moran Ricker Map tends towards in�nity, the Lyapunov exponent (λ) mea-

sures the average rate at which very close trajectories diverge [81]. A positive

Lyapunov exponent would mean the Moran Ricker Map has growing uncer-

tainty [83]. The global Lyapunov exponent is:

λ = lim
N→∞

1

N

N−1∑
n=0

ln
∣∣∣f̃ ′(Xn)

∣∣∣ (1.11)
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where N is the number of iterations.

The Lyapunov exponent for the Moran Ricker Map, when α is 3, is calculated

by integrating forward the initial conditions 109 steps using Equation 1.11.

Estimates of the Lyapunov exponent range from 0.386 to 0.387, these positive

numbers show that the Moran Ricker Map is chaotic. An attractor is a set

of points which xi+1 moves towards over time [83]. The Moran Ricker Map,

like many dissipative systems, has an attractor [81]. If the initial conditions

do not lie on the attractor they will make their way towards the attractor

in a transitory phase [83]. In this thesis the Moran Ricker Map is used to

explore skill from multi-model ensemble forecasts for a chaotic system as a

proxy for a seasonal weather system.

1.9 Ensemble forecasting

Ensemble forecasts are created by adding small perturbations around the

initial condition [26, 59, 88] to create an ensemble of initial conditions. This

ensemble of initial conditions is then integrated forward through the model

to create an ensemble of estimates [26, 59, 88]. The ensemble of estimates is

converted into a probabilistic forecast by standard kernel dressing [5].

Chaotic non-linear dynamical systems are found throughout the natural

world, for example in weather systems and population dynamics. In chaotic

systems variations grow on average exponentially [47]. An additional prob-

lem is that in the natural world the exact initial conditions are unknown.

As Lorenz has demonstrated, a minuscule error in the initial condition for

a chaotic system, can cause a signi�cantly di�erent output [46]. Initial con-
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ditions that are almost identical can soon take very di�erent trajectories

through the dynamical system. An issue is how to account for uncertainty

in the initial condition.

This is a problem that has been addressed in state of the art seasonal weather

models using ensemble forecasting [6,12,26,31,60]. In meteorological o�ces

from UK, France, Germany and Italy instead of integrating forward just one

initial condition through the system, an ensemble of initial conditions are

used. Given a perfect model and very many observations, the initial con-

ditions would be selected from a known probability distribution. In reality,

this probability distribution is unknown. Integrating forward the trajectories

of the entire initial state would use too much computer resources. Instead

a �nite sample is randomly selected. This ensemble of initial conditions is

then integrated forward through the dynamical system to provide a measure

of how the full initial probability distribution would have been transformed.

How to select the initial conditions is another issue for seasonal weather

modellers. Only a �nite number of initial conditions are used in operational

forecasting centres due to the size of the computing required [99]. For sea-

sonal weather forecasts, ensembles are created by adding small perturbations

around the initial conditions [26,59,88]. The selection of these initial condi-

tions is an area of active research; just adding random numbers to the best

estimate of the initial condition does not produce the most accurate ensem-

ble forecast [61]. These ensembles are then integrated forwards through time

using a coupled ocean-atmosphere model [60,96].

An ensemble of estimates contains information about the distribution of the
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transformed initial state. A probabilistic forecast from the ensemble provides

a measure of the uncertainty in the forecast. For example, if you were told

there was a 90% chance of heavy rain you might take your umbrella whereas

for a 5% chance you might decide not to. There are many approaches to

transform the ensemble into a probabilistic forecast [24,66,73,79,94,98]. In

this thesis standard kernel dressing [5] is used.

1.10 Converting an ensemble into a probabilistic

forecast

Standard kernel dressing converts an ensemble into a probabilistic forecast

[5,79]. Standard kernel dressing is illustrated in Figure 1.5 where individual

ensemble members (black circles) are converted into probabilistic forecasts by

replacing each ensemble member with a Gaussian kernels (dotted black lines).

The Gaussian kernels are summed across all the ensemble members and

normalised to create a probability density function (red line). An Ne member

ensemble is Xi = [x1i , . . . , x
Ne
i ] at time i. The kernel dressing parameters

used are Θ = [σ, u] where σ is the kernel width and u is the o�set. If there

are systematic errors in the model a �xed o�set is used to correct the bias

in the ensemble. If the width of σ is too wide, or too narrow, the skill of the

probabilistic forecast will be impacted [18]. The probability density function

for an ensemble is:
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Figure 1.5: An illustration of how standard kernel dressing converts a nine member
ensemble into a forecast distribution. Note the non Gaussian shape of the forecast
distribution.

p(y : X,σ, u) =
1

Neσ

Ne∑
j=1

K

(
y − (xj − u)

σ

)
(1.12)

where p is the forecast distribution, y is the outcome and the jth ensemble

member xj is replaced by a kernel centred on (xj − u). The Gaussian kernel

K(·) is:
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K(ζ) =
1√
2π
e−

1
2
ζ2 (1.13)

In this thesis kernel dressing parameters were chosen by minimising Igno-

rance [18] as explained in Section 1.11.

1.11 Measuring skill from a probabilistic forecast

To measure the skill of a probabilistic forecast, the model's forecasts need to

be evaluated against the independent outcomes. There is a set of N forecast-

outcomes pairs (pi, Yi), where pi is the forecast distribution, from Equation

1.12, and Yi is the outcome for point i. Each point i, where i = 1, ..., N ,

has one forecast and one outcome. The skill score used to evaluate them is

empirical Ignorance; the sum of the negative log probabilities of the outcomes

[25,72]:

SEI(p(y), Y ) =
1

N

N∑
i=1

− log2[pi(Yi)] (1.14)

The more skill the probabilistic forecast has, the lower on average the value

of the empirical Ignorance. As the value of the probabilistic forecast can fall

between a minimum of 0 and a maximum of 1, correspondingly empirical

Ignorance values can range between in�nity and 0. A useful way to evaluate

a model's skill is to consider relative Ignorance, where the model's empiri-

cal Ignorance is measured relative to a bench mark model [5]. In seasonal
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weather forecasting a standard bench mark model is climatology [36], ob-

tained by standard kernel dressing historical outcomes, this is explained in

Section 2.2.4. For climatology the skill score is:

SC(p(y), Y ) =
1

N

N∑
i=1

− log2[pc(Yi)] (1.15)

The equation for relative Ignorance then becomes:

SRel(p(y), Y ) =
1

N

N∑
i=1

− log2[(pi(Yi)] + log2[pc(Yi)] (1.16)

Negative relative Ignorance means the model's forecast has on average more

probability mass on the outcome than the bench mark model forecast. Ide-

ally the model's skill should be evaluated out of sample using cross-validation

[2]. In large forecast-outcome archives, the archive is divided into two sets

with one set used to train the parameters and the other independent set used

to evaluate the skill.

Unfortunately only small forecast-outcome archives are available for seasonal

weather models, so all their data is precious and a more careful approach

must be used for training and evaluating. In this situation a compromise

needs to be reached between using as much of the data as possible to obtain

the most accurate results without over �tting so leave-one-out cross-validation

is used [82]. The forecast distribution is p(Xi,Θ), where the ensembles are

Xi, the parameter vector is Θ, the outcomes are Yi for i = 1, ..., N and

where N is the number of forecast-outcome pairs. Too �t the parameter

vector one forecast-outcome pair (p(Xj), Yj) is omitted and Θ is chosen
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by minimising empirical Ignorance over the remaining pairs from Equation

1.16 [18]. This is repeated until every forecast-outcome pair has been omit-

ted once. The median value Θ̄ from the set of N estimated Θs is used as the

kernel dressing parameters by the model. Taking the median is unlikely to

allow signi�cant information contamination [82].

1.12 Seasonal weather models

In seasonal weather forecasting not only are there are uncertainties in the

initial conditions, but also from the seasonal weather models themselves. Al-

though weather is similar to a complex chaotic system, the physical processes

can only be approximated by the models. State of the the art forecasting

mitigates for this by using not one model forecast, but a multi-model fore-

cast [60,96]. The probabilistic forecast from each model is equally weighted

together. Multi-model forecasts have been shown to improve the skill of the

forecast [17].

Seasonal weather forecasts are made using multi-model ensemble forecasts

[60, 96]. An ensemble is made by integrating forward an ensemble of ini-

tial conditions through each model to account for observational uncertainty

[32, 60]. More than one model is used to account for model inadequacy

[17, 26, 93, 96]. Development of the European Multimodel Ensemble sys-

tem for seasonal to interannual prediction (DEMETER) uses seven global

coupled ocean-atmosphere models [60] from European Centre for Research

and Advanced Training in Scienti�c Computation, France (CERFACS), Eu-

ropean Centre for Medium-Range Weather Forecasts International Orga-
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nization (ECMWF), Istituto Nazionale de Geo�sica e Vulcanologia, Italy

(INGV), Laboratoire d'Océanographie Dynamique et de Climatologie, France

(LODYC), Centre National de Recherches Météorologiques, France (Météo-

France), the UK Met O�ce, UK (Met O�ce) and Max-Planck Institut für

Meteorologie, Germany (MPI).

So that these seasonal weather models were directly comparable with each

other, the initial conditions run through each model were as similar as the

individual model's constraints allowed. A set of hindcasts, historical weather

initial conditions, was used from ECMWF 40-year Re-analysis (ERA40) from

1980 to 2001 [89]. The models were launched four times a year (on the 1st

February, 1st May, 1st August and 1st November) creating a six month

seasonal forecast each with nine ensemble members. Due to the seasonal

nature of weather a month ahead forecast for March is not comparable to a

month ahead forecast for September. In the forecast-outcome archive there

are only 22 March one month ahead forecasts, hence 22 points. The ensemble

from each model was equally weighted to produce a multi-model forecast

[17, 60]. There is a high computational cost from running multiple seasonal

models, so only a small number of ensemble members, nine, were run for each

model in DEMETER [8, 60]. There are more recent international multi-

model ensemble forecasts for seasonal weather such as ENSEMBLES [31].

Nevertheless the experimental design for the multi-model ensemble forecasts

used in this thesis is based on DEMETER.
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1.13 Overview of introduction

This chapter has provided an introduction to crop models, a simple dynam-

ical system and meteorological observations. The background places the

thesis in context, but aside from the presentation there is no new contribu-

tion in this Chapter. Original work is introduced starting in Chapter 2. The

questions considered in this thesis include:

1. �How to interpret the information contained within an ensemble?� is

in Section 1.10.

2. �How to combine and weight estimates from di�erent models to produce

a forecast with the most skill?� is in Sections 2.4 and 2.6.

3. The limitations from using small data sets is in Section 2.3.

4. �Whether including an empirical crop model in the forecast can add

skill?� is in Section 3.7.

5. �How to account for technical advancements in the yield curve?� is in

Section 4.5.

1.14 Contributions

The main contributions from this thesis are:

1. Creation of models for a simple one-dimensional dynamical system, as

shown in Figure 2.2, as a proxy for seasonal weather forecasts. Using

these models to investigate multi-model ensemble forecasting.
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2. Demonstrating the limitations from making probabilistic forecasts us-

ing a small forecast-outcome archive in Section 2.3.

3. An investigation proving the skill of multi-model ensemble forecasting

can be improved by including climatology as a separate model in an

equally weighted multi-model forecast is in Section 2.5.

4. An investigation proving individual model skill is improved by blending

climatology with models of the Moran Ricker Map is in Section 2.6.

Blending with climatology is not new, but blending with the Moran

Ricker Map is.

5. An investigation proving the skill of multi-model ensemble forecasts

is increased by blending Moran Ricker Map models with climatology

before equally weighting the forecasts is in Section 2.6. Again blending

is not new but using blending with multi-model forecasts is.

6. Generating a probabilistic forecast from the CERES-Maize model in

Section 3.1 by standard kernel dressing the singleton ensembles with a

Gaussian kernel.

7. Selection of a suitable bench mark model to measure the skill of crop

models is discussed in Section 3.3.

8. Identifying which method to select the kernel width for probabilistic

forecasts provides the most skill is illustrated in Figure 3.19 from Sec-

tion 3.5 for crop yields.

9. An investigation proving equally weighting the CERES-Maize model
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with an empirical model increases the skill of the forecast. This is

explored at US level in Section 3.7 and at state level in Section 3.8.

The state level results are shown in Figure 3.25.

10. Graphical analysis of the variability of meteorological observations and

yield across di�erent counties in Iowa are in Chapter 4.

11. A new method for identifying technology increase in the yield curve

using maximum prior yield is explored in Section 4.5.

12. A method to produce an ensemble of gridded weather realisations which

capture the sampling uncertainty in the gridded data is in Chapter 5.

This method will be used in the future work to create a probabilistic

forecast for yield.
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Chapter 2

Illustrating challenges to

multi-model forecasting when

data are precious

2.1 Introduction

Many practical forecasting systems are challenged by the fact that the forecast-

outcome archive is small, this is due to the short duration that the system

has been observed as well as the slow pace of adding new outcomes. In sea-

sonal weather forecasting, for example, there are roughly 50 well observed

years. The outcomes start at the advent of high quality satellite monitoring,

and can only increase by one additional year every year. Given a collection of

models, each producing an ensemble of simulations, challenges arise ranging

from how to establish the skill (in-sample with cross-validation) to determin-
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ing how to weight and combine (or discard) ensembles or simulations from

di�erent models.

This chapter studies these challenges by constructing an analogous system.

Within this system the number of models and their quality, along with the

parameters that de�ne their ensemble simulations and the size of the forecast-

outcome archive are varied, so that the impact of this variation is quanti�ed.

The analogue is found in an �idealised world� based on the Moran Ricker

Map. The aim here is not to solve the problems of seasonal forecasting with

a one-dimensional chaotic map, but rather to illustrate these challenges, and

clarify which are unavoidable given multiple models and a small archive,

and which might be resolved. It is hoped insights regarding the nature of

the challenges are generalised to actual seasonal forecasting.

Section 2.2 is used to explain the background information for the numer-

ical experiments, such as how the initial conditions for the ensemble are

selected (Section 2.2.1) and the bench mark model (Section 2.2.4). The

bench mark model uses a naïve prior distribution called climatology [5]. This

is a standard bench mark model used in seasonal weather forecasting [36].

A series of experiments are conducted in the �idealised world� designed to

resemble the multi-model ensemble forecasting methods used by seasonal

weather forecasting. Given the complexity of the physical weather sys-

tems, these experiments are conducted on the simple one-dimensional Moran

Ricker Map [56, 70] (Equation 1.8), a chaotic non-linear dynamical system

that acts as a proxy for a weather system. Using three imperfect models of

this system allows us make an �idealised world�, unencumbered with most
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2.1. Introduction

of the problems faced by seasonal weather models, but still able to demon-

strate the important features of forecasting a chaotic dynamical system. An

overview of the experimental design is given in the �ow chart in Figure 2.1.

In particular, the only uncertainty is from model inadequacy, as the perfect

model is known and noise free observations are generated.

Contrasts between a case with a large archive, and a case with a small archive

are made in Section 2.3. How forecasts from multiple models are combined is

examined in the context of a large forecast-outcome archive. The skill from

equally weighting the forecasts from multiple models is examined in Section

2.5, in addition whether using all the models in the multi-model forecast is

the best option is explored. In seasonal weather modelling, blending with

climatology improves the skill of the forecast [5, 80] and this is generally

believed to be true for chaotic systems [5]. Blending with climatology is

explored in an idealised chaotic system with unlimited data. In particu-

lar whether using climatology as a separate model in an equally weighted

forecast is bene�cial is explored in Section 2.5. Additionally, the skill of

a multi-model forecast if the individual model's forecasts are blended with

climatology before being equally weighted together is examined in Section

2.6.

symbol meaning of symbol

α blending parameter that weights model with climatology

ε random noise

εj perturbation for the jth ensemble member

κ size of the radius of the uncertainty circle
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symbol meaning of symbol

K Gaussian kernel used for kernel dressing

m number of models in the multi-model forecast

Narch the number of points in the large forecast-outcome archive

Sarch

Nattr number of points that lie on the systems attractor

Nclim number of points in very large set of outcomes Yclim

Ne number of ensemble members

Niter number of steps integrated forward through the model

Ntrain number of points in the training set Strain

Ntest number of points in the testing set Stest

pc(y) probability density function of climatology

pm(y) density function of the forecast distribution

s observation

S(p(y), Y ) skill score

Sarch large forecast-outcome archive

Sattr set of initial conditions which lie close to the dynamical sys-

tem's attractor

SCL empirical Ignorance for climatology

SEI empirical Ignorance

SRel empirical Ignorance relative to climatology

Ssample small set of forecast-outcome pairs

Stest large set of forecast-outcome pairs used for testing

Strain large set of forecast-outcome pairs used for training
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2.2. Models for the non-linear dynamical system

symbol meaning of symbol

σ kernel width, a kernel dressing parameter

σcl kernel width for climatology

u o�set, a kernel dressing parameter

v state space

x̃0 a set of evenly spaced points between 0 and 2.5

xji the jth ensemble member from Xi

Xi an Ne member ensemble of estimates at time i

Y outcome

Yclim a very large set of outcomes

In the next section models for the chaotic dynamical system are explained.

2.2 Models for the non-linear dynamical system

In the �idealised world�, the observations generated by the Moran Ricker Map

are noise free. Points integrated forward through the system are de�ned as

f̃(x). To examine the e�ect of model error the same points are integrated

forward through the model f(x). Three models of the Moran Ricker Map

are created, these are:

MR12: A truncated Taylor series expansion of the e3(1−xi) section of the

Moran Ricker Map (Equation 1.8) to the 12th term (see Appendix B.1):

67



Weather
obs

[historical

data]

Seasonal
weather
models

Ensemble
forecasting

Bench
mark
model

Forecast

Look at skill 1

Look at skill 2

MR map
[historical

data]

MR
models

Ensemble
forecasting

Bench
mark
model

Forecast

Look at skill 1

Look at skill 2

Figure 2.1: Overview of experimental design. Top: multi-model ensemble fore-
casts used for seasonal weather forecasting. The system is the weather, modelled
by seasonal weather models using ensemble forecasting. Skill from (1) is measured
against the skill from the bench mark model, climatology (2). Bottom: the ide-
alised world using the Moran Ricker Map as the system. Models which approximate
the Moran Ricker Map are used to create an ensemble forecast. Skill from (1) is
measured against the bench mark model, climatology (2).
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2.2. Models for the non-linear dynamical system

xi+1 = xi

[
1 + 3(1− xi) +

1

2!
(3(1− xi))2 +

1

3!
(3(1− xi))3 + . . .

+
1

12!
(3(1− xi))12

]
(2.1)

MRLM: A truncated log model expansion of the Moran Ricker Map to the

8th term (see Appendix B.2):

log(xe3(1−x)) = log(x) + log(e3(1−x))

log(xe3(1−x)) = log(x) + 3− 3x

log(xe3(1−x)) = log(x) + 3− 3(elog(x))

log xi+1 = log xi− 3

(
log xi +

(log xi)
2

2!
+

(log xi)
3

3!
+ ...+

(log xi)
8

8!

)
(2.2)

At the �xed point 0, xi+1 is set to 0.

MRFT: A truncated Fourier model of the Moran Ricker Map to the 12th

term (see Appendix B.3):

y =
2.8391√

(2)
+ 0.7551 cos

(
2πx

2.46

)
− 0.2872 cos

(
4πx

2.46

)
(2.3)

The initial condition x̃0 contains 1000 regularly spaced points between 0 and

†see Appendix B.3 for full values
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(b) Di�erences using MR12.
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(c) System and MRLM.
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(d) Di�erences using MRLM.
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(e) System and MRFT.
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(f) Di�erences using MRFT.

Figure 2.2: Figures (a), (c) and (e) show how close the models are to the system
when integrated forward one step. Each model deviates from the system at di�erent
locations. For MR12 (b) the large di�erence is when x̃0 is approaches the maximum
value. For MRLM (d) the large di�erence is when x̃0 is close to 0. For MRFT (f)
the di�erences oscillate across the entire x̃0 range but are largest for x̃0 close to 0.
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2.2. Models for the non-linear dynamical system

2.5. x̃0 is integrated forward one step through the model f(x̃0) and the

system f̃(x̃0). Comparisons between the model (in colour) and the system

(in black) in Figure 2.2 show the similarities between the models and the

system. Considering the di�erences, the locations of the deviations from the

system by each model are clear. Model MR12 in Figure 2.2b has a large

deviation from the system when x̃0 approaches 2.5. Model MRLM in Figure

2.2d has a large deviation when x̃0 approaches 0. Lastly model MRFT in

Figure 2.2f oscillates around 0 across all the values of x̃0 but the larger

deviations are when x̃0 approaches 0.

2.2.1 Initial conditions

Initial conditions should be a realistic sample from the dynamical system.

Making random perturbations in all directions could result in an unrealis-

tic ensemble of states including some states which the system would never

actually reach. To ensure initial conditions used by the models are represen-

tative of initial conditions from the dynamical system, the initial conditions

must be close to the dynamical system's attractor [83]. For clarity there

may well be an attractor in each model, but in this experiment only initial

conditions close to the attractor from the system are used. To ensure this

x̃0 is integrated forward 1000 steps through the Moran Ricker Map to make

Sattr. Points generated from earlier integrations are not used in these ex-

periments. Sattr is de�ned as a set of initial conditions on or close to the

system's attractor.
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1

Figure 2.3: How the value of κ (left circle) determines the spread of the ensemble
(right circle) at iteration two for a two dimensional system.

2.2.2 Creating the ensemble

Following work by [23] κ is de�ned as the spread such that the mean square

error of the model estimate when integrated forward two steps is equal to

the ensemble spread.

To create an ensemble of initial conditions, perturbations are drawn from

inside an uncertainty circle surrounding the observation. Initial conditions

for the Moran Ricker Map are drawn from a one dimensional line, so the

width of an uncertainty interval needs to be estimated, rather than the radius

of an uncertainty circle. As the observations are noise free, in this experiment
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2.2. Models for the non-linear dynamical system

the uncertainty captured by the ensemble needs to be representative of the

model uncertainty. As all the models vary in di�erent ways from one another

they each need intervals of di�erent widths. The interval κ needs to be wide

enough so that once the ensemble of initial conditions is integrated forward

two steps through the model the observed outcome should be contained

within the spread of the ensemble [7]. Even a perfect ensemble however has

a 2
Ne

chance that the outcome lies outside the range of the ensemble [63]. The

steps to calculate κ are summarised in the �ow diagram in Figure 2.4. Sattr

was integrated forward two steps through both the system and the models.

To create an ensemble member a perturbation was added to the observation

si. The perturbation was randomly drawn from a uniform distribution and

scaled to match the uncertainty interval, applicable for each model, by tuning

by κ as shown in Equation 2.4.

xji = si + εj (2.4)

Where the jth perturbation is εj , εj ∼ U(−κ
2 ,

κ
2 ) where 0 ≤ κ ≤ 1 and

i = 1, ..., Nattr and j = 1, ..., Ne. To calculate the value of κ for each model

the following calculations were made after integrating forward two steps using

the set of initial conditions Sattr:

1. Mean square error between model image and system image:

The di�erences between the images of the initial conditions from the

system f̃(xi) and each model f(xi) was quanti�ed using the mean

square error.
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Figure 2.4: Creating realistic ensemble members: To generate Sattr x̃0 is inte-
grated forward 1,000 times through the system so that the initial conditions lie
close to the system's attractor. State space is shown in green, model spaces are
shown in blue. The uncertainty interval width (κ), shows the maximum perturba-
tion added to the initial condition to create an ensemble of initial conditions. κ is
set when the ensemble spread equals the mean square error of the model estimate
at step two.

74



2.2. Models for the non-linear dynamical system

Model κ

MR12 0.059

MRLM 0.030

MRFT 0.039

Table 2.2: Radius (κ) for the uncertainty interval around the observations from
within which the perturbations are randomly drawn.

e =
1

Nattr

Nattr∑
i=1

(f(xi)− f̃(xi))
2 (2.5)

where i = 1, ..., Nattr.

2. Ensemble spread: The mean square error between the individual

ensemble members (xji ) and the ensemble mean (X̄i) .

e =
1

NeNattr

Nattr∑
i=1

Ne∑
j=1

(xji − X̄i)
2 (2.6)

Figure 2.5 shows how κ was selected for each model, as the value where the

mean square error of the model estimate (blue line) crosses with the ensemble

spread (dotted blue line). The ensemble spread is widest for model MR12 in

2.5a.

The width of the uncertainty interval (κ) for each model is shown in Table

2.2. Models MRLM and MRFT have smaller uncertainty intervals than

model MR12.

75



0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

κ

σ

 

 

ensemble spread
MSE from model image

(a) MR12

0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1
0

0.05

0.1

0.15

0.2

0.25

κ

σ

 

 

ensemble spread
MSE from model image

(b) MRLM
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Figure 2.5: κ is set where the mean square error for the model image (blue line)
crosses the ensemble spread (blue dashed line) for all models integrated forward
two steps. Note that κ is widest for MR12.
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2.2. Models for the non-linear dynamical system

2.2.3 Creating an idealised forecast-outcome archive

To collate data for international seasonal weather models requires consid-

erable collaboration between di�erent countries to compile the same initial

conditions, the same �le formats, etc. In addition satellite readings, which

are now necessary as model inputs, are only available from the 1980s on-

wards. This means that seasonal weather forecast-outcome archives are only

small, and grow very slowly, so their data is �precious� [80].

All the tools necessary to create a multi-model ensemble forecast from an

idealised world which mirrors the state of the art seasonal forecasts have

been created. The �ow chart in Figure 2.6 explains the steps required to

create an archive when integrated forward �ve steps. Each model has a set

of Narch pairs of ensembles and outcomes [Xi, Yi] at time i, where Xi has

Ne ensemble members. In the idealised world a large number of ensembles

from the models and outcomes from the system are generated, a luxury not

available in the real world.

2.2.4 How to form a naïve probability distribution using pri-

ors

A naïve probability distribution is used as a bench mark model. Called

climatology, it is a static distribution based on historical observations [5]. To

convert the static climatological distribution into a probability distribution

each observation is dressed with a Gaussian kernel where the kernel width

(σcl) is set by minimising Ignorance [5, 18] de�ned in Section 1.11. If the

historical set of outcomes is Yclim, the probability density function is:
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Figure 2.6: Creating ensembles and outcomes: Sattr is divided into two sets; one
set is used to train parameters (Strain) and one set is used to verify the forecast
(Stest). For each point in Strain, Ne ensemble members are selected. These ensem-
bles are integrated forward �ve steps. Outcomes are from Stest integrated forward
�ve steps.
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2.2. Models for the non-linear dynamical system

pcl(y : Yclim, σcl) =
1

Nclimσcl

Nclim∑
i=1

K

(
y−yi
σcl

)
(2.7)

In the idealised world based on a simple dynamical system, computational

output is cheap, so a very large set of outcomes are generated from the Moran

Ricker Map. Here Yclim is a set of 10,000 outcomes. The kernel width (σcl),

chosen by minimising ignorance, is 0.02. Although the Moran Ricker Map

is used as a proxy for a seasonal weather system, it has no seasonality. † A

histogram of the historical outcomes is shown in Figure 2.7, most cluster at

a number just greater than 0.

symbol value description

Ne 9 number of ensemble members

Narch 2000 points in the large forecast-outcome archive

Nclim 10000 large set of historical outcomes

Niter 5 number of steps through the model

Nsample 22 points in small forecast-outcome archive

Ntest 1000 points in the testing forecast-outcome archive

Ntrain 1000 points in the training forecast-outcome archive

†To estimate climatology when weather patterns di�er in di�erent seasons of the year,
the kernel width (σcl) is calculated separately for each month by separating out the his-
torical observations by month.
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Figure 2.7: Moran Ricker outcomes (Yclim).

2.3 Illustrating the restrictions of a small forecast

- outcome archive

How kernel dressing parameters and skill are impacted by the size of the

forecast-outcome archive is explored in this section using data from the ide-

alised world where the only uncertainty is from model inadequacy. The

dynamical system is the Moran Ricker and the three models of this system

are MR12, MRLM and MRFT.

A number of original experiments are conducted on forecast-outcome pairs

(p(Xi), Yi) where p(Xi) is the forecast from kernel dressing the nine ensemble
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2.3. Illustrating the restrictions of a small forecast - outcome archive

members Xi, and Yi is the outcome at time i.

In these experiments the large set (Sarch) contains 2000 forecast-outcome

pairs. The forecasts from the large set are made by using half of this set

(Strain) to train the kernel dressing parameters, with the independent sec-

ond half (Stest) used to evaluate the skill. The small set (Ssample) contains

just 22 forecast-outcome pairs. The kernel dressing parameters and skill are

trained and evaluated using leave-one-out cross-validation on Ssample. The

skill of the probabilistic forecasts from the models is measured relative to

climatology.

Experiment 1 compares the kernel dressing parameters and skill between dif-

ferent models trained and evaluated on large set Sarch after being integrated

forward �ve steps.

Experiment 2 compares the skill between models trained and evaluated on

a small set Ssample integrated forward �ve steps. It also compares the prob-

abilistic forecast skill from Sarch and Ssample.

Experiment 3 examines the uncertainty in skill from probabilistic forecasts

from a small set (Ssample) when integrated forward �ve steps and three steps

by comparing:

1. IGNBig: where kernel dressing parameters are trained on the large set

Strain and the skill is evaluated on the large set Stest.

2. IGNSmall: where kernel dressing parameters are trained on the small

set Ssample and the skill is evaluated on the large set Stest.

Experiment 4 examines kernel dressing parameters and skill from di�erent
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sized forecast-outcome archives integrated forward three steps. Step three is

selected as di�erences between the skill at step �ve are hard to distinguish.

Five di�erent sized sets of forecast-outcome pairs are created with 22, 44,

88, 176, 352 and 704 points respectively. Comparisons are made between

kernel dressing parameters and skill from these sets and the large set Sarch.

Experiment 5 examines the variability in the kernel dressing parameters and

skill from 1000 sets of 22 pairs (Ssample). For clarity kernel dressing parameters

and skill are calculated separately for each Ssample.

The model's forecast with the most skill when a large forecast-outcome archive

is used is investigated. The kernel dressing parameters and skill from Ex-

periment 1 are in Table 2.4. The kernel width σ is wider for model MR12

at 0.84 and narrower for the other models at 0.33 for MRLM and 0.35 for

MRFT. All the models have o�sets around 0. None of these models sig-

ni�cantly out perform climatology, relative Ignorance shows that only one

model MRLM, with a negative score of -0.04, has slightly more skill than

climatology. Model MR12 with relative Ignorance of 1.14, much higher than

the other two models, has the least skill. The standard deviation which

measures the variability of the relative Ignorance shows model MR12 has

the widest spread of values.

Model σ u rIGN rIGN std

MR12 0.84 0.05 1.14 2.14

MRLM 0.33 0.07 -0.04 1.78

MRFT 0.35 -0.05 0.09 1.77

Table 2.4: Kernel dressing parameters and skill after integrating forward �ve
steps for a large forecast-outcome archive. rIGN is empirical Ignorance relative to
climatology and rIGN std is the sample standard deviation of relative Ignorance.
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2.3. Illustrating the restrictions of a small forecast - outcome archive

Which model has the most skill using a small forecast-outcome archive is

examined in Experiment 2. The results in Table 2.5 show that the wider

kernel is again for model MR12 and the narrower kernel is for model MRFT.

For all the models the value of u has moved further away from 0. From

relative Ignorance, two of the three models MRLM and MRFT have more

skill than climatology, a result inconsistent with the results from the large

forecast-outcome archive (Sarch) in Table 2.4. If these results are to be be-

lieved, forecasting using a small sample has more skill than forecasting from

a large sample. With Ssample from Experiment 2 used for both the training

and evaluation of skill it seems that the skill may have been overestimated, a

premise that is explored next. The numbers in this table are calculated from

one small forecast-outcome archive, and are expected to vary signi�cantly if

a di�erent small forecast-outcome archive is used.

Model σ u IGN IGN std

MR12 0.79 -0.15 0.94 1.96

MRLM 0.32 0.05 -0.44 1.95

MRFT 0.30 -0.15 -0.27 1.48

Table 2.5: Kernel dressing parameters and empirical Ignorance relative to clima-
tology after integrating forward �ve steps where the parameters were trained using
leave-one-out cross-validation on Ssample, an archive of 22 points.

The skill when the kernel dressing parameters are trained on large and small

archives are compared in Experiment 3. The kernel dressing parameters for

IGNBig are trained on the large set Strain and for IGNSmall they are trained

on the small set Ssample. They are both evaluated on the same set, Stest. The

results, from a forecast for �ve steps integrated forward, is in Table 2.6. Neg-

ative di�erences show that the IGNBig column always has more skill than the

83



Chapter 2. Illustrating challenges to multi-model forecasting when data
are precious

IGNSmall column. Evaluating the skill using leave-one-out cross-validation

on a small sample of 22 points, has caused the skill to be overestimated.

Is this still the case when the models have more skill than climatology? A

forecast when there is a smaller number of steps will increase the skill of the

forecast. This experiment is repeated with the number of steps integrated

forward reduced from �ve to three. The results in Table 2.7 show that mod-

els MRLM and MRFT now have more skill than climatology. Even at step

three, the ensemble forecast using a small sample has overestimated the skill

in this example.

Model IGNBig IGNSmall di�

MR12 1.14 1.25 -0.11

MRLM -0.04 0.16 -0.20

MRFT 0.09 0.11 -0.02

Table 2.6: Comparison of empirical Ignorance relative to climatology (on Stest)
when the models are integrated forward �ve steps and the kernel dressing parame-
ters are trained using 1000 points (IGNBig) and 22 points (IGNSmall).

Model IGNBig IGNSmall di�

MR12 0.20 0.55 -0.34

MRLM -1.32 -1.08 -0.24

MRFT -1.06 -0.99 -0.06

Table 2.7: Comparison of empirical Ignorance relative to climatology (on Stest)
when the models are integrated forward three steps and the kernel dressing param-
eters are trained using 1000 points (IGNBig) and 22 points (IGNSmall).

How do kernel dressing parameters and skill change with the size of the

forecast-outcome archive? This is considered in Experiment 4. The skill

from di�erent sized forecast-outcome archives is shown in Figure 2.8 for the

MR12 model (red), MRLM model (green) and MRFT model (blue). The

dots are the mean empirical Ignorance relative to climatology and the bars
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2.3. Illustrating the restrictions of a small forecast - outcome archive

show the 5% and 95% con�dence intervals. The con�dence intervals do not

decrease with sample size, which is a surprising result. This was examined

further for model MR12 using histograms of the skill for the di�erent sample

sizes shown in Figure 2.9. Although the 5% and 95% con�dence intervals

remained a similar size across the di�erent sized samples, the likelihood of

an individual sample having a mean relative Ignorance score matching the

overall mean increased with the number of points in the sample. The 5%

and 95% con�dence intervals were replaced with bootstrap re-sampling. For

this 1000 bootstrap re-samples were taken with replacement and the means

were calculated independently for each set, the results are shown in Figure

2.10. In this �gure the 5% and 95% bootstrap re-sampling intervals decrease

as the sample size increases. The problem, that the con�dence intervals

did not decrease with sample size, lay with how the con�dence interval was

measured. Bootstrap re-sampling provides a more accurate measure of un-

certainty as it measures the distribution. The order of skill of the models

remains consistent across all the di�erent sample sizes.

Although MRLM and MRFT have quite similar skill the mean relative

Ignorance of model MRLM is lower than MRFT. Comparisons between σ

and u by sample size and model are in Figure 2.11. The blue line is the

respective kernel dressing parameter. The bootstrap resampling line, set as

5% and 95% of 1000 sorted bootstrap values, is the dotted blue line. The

green line is σ (or µ) estimated from the large set Sarch. For all the models

σ tends towards the Sarch σ as the sample size increases. For model MR12,

the model with the least skill, there is some distance between σ and it's Sarch

85



Chapter 2. Illustrating challenges to multi-model forecasting when data
are precious

σ value when the sample size is 704. For the other models the estimate is

closer to the Sarch value at smaller sample sizes. Similar patterns are seen

with u estimates over the di�erent sample sizes.

Experiment 5 investigates whether a small forecast-outcome archive with 22

points normally over estimates the skill using 1000 sets of Ssample. The vari-

ability for the 1000 di�erent kernel dressing parameters is shown in Figure

2.12 for σ and in Figure 2.13 for u. In both Figures kernel dressing parameters

are shown separately by model and by steps integrated forward, with �ve

steps on the left side and two steps on the right side. For models MRLM and

MRFT most of the kernel dressing parameters have more variability at �ve

steps than at two steps as for each integration forward through the model

more uncertainty is introduced. For model MR12 (blue) σ has more variabil-

ity than the other models at lead time two. There are some discrepancies on

how well the kernel dressing parameters are estimated using small archives.

In particular both u and σ at step two for model MR12 tend to be over

estimated and σ at step two for model MRFT tends to be under estimated

when compared to their values estimated using the large set Sarch (black

dashed line).

Histograms showing the di�erence in skill between the large set (Sarch) and

1000 small sets of 22 points are shown in Figure 2.14. Negative values show

skill calculated using a small forecast-outcome archive has been over esti-

mated. At �ve steps integrated forward the majority of samples over esti-

mate skill. These results show that the uncertainty of the skill is large when

the sample size is small. The amount of uncertainty seems dependent on
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Figure 2.8: Skill by model and sample size. Note that the con�dence intervals do
not decrease as the sample size increases.
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(f) 704 points

Figure 2.9: Histograms of skill by sample size for MR12. For clarity (e) and (f)
have di�erent y axes. Note with larger sets it is more likely that the sample mean
will be closer to the actual mean.
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Figure 2.10: Skill by model and sample size and 5% and 95% bootstrap resampling
intervals. Note that the order of which model has the most skill remains consistent
across all the sample sizes.
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(c) MRLM σ
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(d) MRLM u
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(e) MRFT σ
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Figure 2.11: Comparing kernel dressing parameters of di�erent sized forecast-
outcome archives with values estimated from a large archive (Sarch) at step three.
σ is on the left and u is on the right. Note that the σ and u values tend towards
the green line as the sample size increases.
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(a) MR12 σ at step 5.
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(b) MR12 σ at step 2.
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(c) MRLM σ at step 5.
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(d) MRLM σ at step 2.
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(e) MRFT σ at step 5.
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(f) MRFT σ at step 2.

Figure 2.12: The variability of σ from 1000 sets of Ssample when integrated forward
�ve steps. σ from Sarch is shown as dashed black lines. MR12 has the widest
variability of σ estimates.
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(a) MR12 u at step 5.
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(b) MR12 u at step 2.
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(c) MRLM u at step 5.
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(d) MRLM u at step 2.
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(e) MRFT u at step 5.
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(f) MRFT u at step 2.

Figure 2.13: The variability of u from 1000 Ssample when integrated forward for
�ve steps and two steps. Sarch values of u are shown as dashed black lines. The
spread of u estimates is wider at step 5 than at step 2.
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Figure 2.14: Histograms comparing the skill from a small archive. Negative val-
ues mean the skill of the small archive has been over estimated. Skill is relative to
climatology. When integrated forward �ve steps most of the skill has been overes-
timated.
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both the level of model inadequacy and number of steps integrated forward.

symbol value description

m number of models included in multi-model forecast

Narch 2000 number of points in large forecast-outcome archive

Sarch

Ntrain 1000 points in training set Strain

Ntest 1000 points in testing set Stest

Nclim 10000 points in Yclim

2.4 How to combine multiple models

In DEMETER, R Hagedorn, F J Doblas-Reyes and T N Palmer [26] combine

the individual model forecasts using equal weights. In this section the skill of

multi-model ensemble forecasting is explored using three models of a chaotic

dynamical system, the Moran Ricker Map. By design the only uncertainty in

this idealised world is from model inadequacy. For these experiments a large

forecast-outcome archive with 2000 points is used, a luxury not available in

the real world and means the skill can be measured out of sample. The skill

of equally weighted models is again evaluated relative to climatology.

2.5 Skill from equally weighted models

Sometimes the outcome lies a long way outside the ensemble, so the prob-

ability mass of the outcome occurring is approximately zero, this gives the

negative log-form of empirical Ignorance a very large penalty, known as a
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2.5. Skill from equally weighted models

m MRFT MRLM MR12 Clim Relative IGN Std

3 1 1 1 0 0.13 1.49
2 0 1 1 0 0.29 1.56
2 1 1 0 0 -0.10 1.54
2 1 0 1 0 0.35 1.54
1 1 0 0 0 0.08 1.77
1 0 1 0 0 -0.02 1.79
1 0 0 1 0 1.14 2.13
1 0 0 0 1 0 0

Table 2.8: Skill of equally weighted multi-models (without climatology as a sep-
arate model) when integrated forward �ve steps. Skill is measured relative to
climatology.

forecast bust. To assist cases where the outcome is a long way from the

ensemble members, climatology is added as a separate model to an equally

weighted multi-model forecast.

Including climatology as a separate model in an equally weighted multi-

model forecast is examined to see if it improves the skill. First the skill

of multi-model forecasts without climatology as a separate model is calcu-

lated. The forecasts from the models are equally weighted together using

1
m , where m is the number of models in that particular multi-model combi-

nation. The relative Ignorance (Equation 1.16) is calculated for every pos-

sible combination of the three models (MRFT, MRLM and MR12). Table

2.8 shows the mean relative Ignorance and the standard deviation of these

relative Ignorance values.

The multi-model forecasts do not signi�cantly outperform climatology. The

forecast with the most skill is not from the three models equally weighted,

but from 1100 and 0100 with relative Ignorances of -0.10 and -0.02 respec-
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m MRFT MRLM MR12 Clim Relative IGN Std

4 1 1 1 1 -0.06 1.01
3 0 1 1 1 -0.01 0.90
3 1 1 0 1 -0.24 0.95
3 1 0 1 1 0.04 0.85
2 1 0 0 1 -0.18 0.75
2 0 1 0 1 -0.25 0.80
2 0 0 1 1 0.21 0.55

Table 2.9: Skill of equally weighted models (including climatology as a separate
model). Skill is measured relative to climatology.

tively, though given the large standard deviation, this is not signi�cant. The

multi-model forecast with the largest relative Ignorance, and so the least skill

at step �ve, is 0010 (or MR12) with 1.14. By de�nition the relative Ignorance

of climatology is zero.

The skill from including climatology as a separate model in an equally

weighted multi-model forecast is considered. The results are in Table 2.9.

The skill for all the multi-model forecasts has increased and the variability of

relative Ignorance, measured by standard deviation, has decreased. Includ-

ing climatology as a separate model in the multi-model forecast produces

forecasts with more skill. Only two multi-model forecasts 1011 and 0011,

now have less skill than climatology.

Box plots where equally weighted multi-model forecast excludes climatology

(Figure 2.15a) and includes climatology (Figure 2.15b) reveal more details

about why including climatology improves the skill. With the box plots the

centre of the box plot is the median, the 25th and 75th percentiles are the

edges of the boxes and the whiskers mark 1.5 times the inter quartile range,

96



1110 0110 1100 1010 1000 0100 0010
−4

−2

0

2

4

6

8

10

R
el

at
iv

e 
Ig

no
ra

nc
e

(a) Without climatology as a model.
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(b) With climatology as a model.

Figure 2.15: Comparison of skill relative to climatology for equally weighted multi-
model forecasts (a) without climatology and (b) with climatology at step �ve. Note
how the variation in relative Ignorance scores reduces in (b), as there are no forecast
busts (red crosses).
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any points that falls outside the whiskers are shown as red crosses.

Comparing the box plots of the relative Ignorance values in Figures 2.15a

and 2.15b show that if climatology is not included in the multi-model forecast

the relative Ignorance scores have a far wider spread and there are more

outliers, speci�cally points greater than 1.5 times the inter quartile range

marked as red crosses, this is especially so when only single models are used

in the multi-model forecast (1000, 0100 and 0010). The red crosses mark

points that fall outside the whiskers, forecast busts.

When climatology is included as a separate model in the multi-model forecast,

Figure 2.15b, there are no red crosses beyond the inter quartile range and

the whiskers have reduced in length. This shows that including climatology

in a multi-model forecast mitigates the e�ect of any forecast busts, reduc-

ing the variability of relative Ignorance and improving the skill. It would

be interesting to repeat both of these experiments integrating forward fewer

steps so the models have more skill, however this is beyond the scope of this

thesis [34].

2.6 Skill from blending models with climatology

With multi-model forecasts in the previous section no di�erentiation is made

between the models in terms of how skilful their forecasts are. If the most

skilful model's forecast is given the highest weighting would the out of sample

skill of the multi-model forecast improve? To explore this each model's

forecast is individually blended with climatology [80] before being equally

weighted in a multi-model forecast. The blending parameter (α) is set by
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2.6. Skill from blending models with climatology

minimising Ignorance [18] so the more skill a model has, the less climatology

is used in the blend:

p(·) = αpm(·) + (1− α)pc(·) (2.8)

Where pm is the forecast distribution from the model and pc is the forecast

distribution from climatology. The kernel dressing parameters are �tted si-

multaneously to avoid unnecessarily wide kernels [5].

Model α σ u rel IGN std

MR12 0.29 0.03 -0.02 -0.24 1.70

MRLM 0.58 0.06 0.02 -0.51 1.91

MRFT 0.45 0.12 -0.01 -0.25 1.41

Table 2.10: Comparison of kernel dressing parameters and skill from blending
models with climatology at �ve steps integrated forward (where Narch is 2000.)
Skill is measured relative to climatology.

The results are shown in Table 2.10. Here α is the weight used for the

model's forecast and thus (1− α) is the weight for the climatology forecast.

As the α values are all less than 1, all the models are more skilful when

blended with climatology. The MRLM model has the highest value of α

which means that blended it has the lowest weighting for climatology. MR12

model has the lowest value for α and so the largest blend of climatology.

Blended MRLM and blended MRFT models have higher skill than blended

MR12.

A comparison between the kernel dressing parameters and relative Ignorance

scores when there is no blending with climatology and when there is blending
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Nmodel MRFT MRLM MR12 Relative IGN Std

3 1 1 1 -0.43 0.96
2 0 1 1 -0.50 1.04
2 1 1 0 -0.43 1.14
2 1 0 1 -0.25 0.82
1 1 0 0 -0.13 1.00
1 0 1 0 -0.52 1.42
1 0 0 1 -0.20 0.84

Table 2.11: Skill of equally weighted multi-models where the models were blended
with climatology before being equally weighted together. Skill is measured relative
to climatology.

with climatology is made. Comparing the results between Tables 2.4 and 2.10

shows that the kernel width σ for all the models is much narrower when a

blending parameter is used. For example, for model MR12 σ reduces by

about a factor of 3, from 0.84 to 0.28. The o�set parameter u for all the

models becomes even closer to zero when blending with climatology. The

relative Ignorance scores are now all signi�cantly lower, so for this example

blending the model with climatology produces more skilful forecasts than

just using the model.

The skill is measured when individually blended forecasts are then combined

as an equally weighted multi-model forecast. The results are shown in Table

2.11. All the multi-model forecasts have more skill than climatology. Is this

method more skilful than including climatology as a separate model (i.e.

without �rst blending the models with climatology)? A comparison of the

results from these two methods in Tables 2.11 and 2.9 show that blending

the models before equally weighting the forecasts provides the most skill in

this example.
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Figure 2.16: Comparison of skill for equally weighted multi-model forecasts when
the models are individually blended with climatology beforehand using a data set
of 2000 points at step �ve. Skill is measured relative to climatology. Note that
there are less points above 0 relative Ignorance.

The box plots in Figure 2.16 show the spread (when Ntest = 1000) of

individual relative Ignorance. Almost all of the multi-model combinations

have the majority of their relative Ignorance scores falling below zero, so

they have more skill than climatology. The whiskers marking 1.5 times the

inter quartile range extend further below the zero line than Figure 2.15b

showing that more outcomes had a higher probability mass on the outcome

when the models were individually blended with climatology before being

equally weighted together.

2.6.1 Blending parameters at di�erent steps

An interesting question is whether one model has more skill at a particular

step integrated forward than other models. This is investigated by examining

the blending parameters by model and step.
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Blending parameter (α) at step:

model 1 2 3 4 5

MR12 0.94 0.79 0.66 0.53 0.29

MRFT 0.96 0.99 0.86 0.69 0.45

MRLM 0.99 0.79 0.70 0.80 0.58

Table 2.12: The values of the blending parameter α for each step integrated
forward. Notice which model has the highest blending parameter at each step.

Table 2.12 shows the values of the blending parameter (α) for each model

by step. For the majority of models the value of α decreases as the number

of steps forward increases. The exception to this is model MRLM at step 4

where the value for α increases from 0.7 to 0.8.

The equally weighted blended forecasts are examined by step in Figure

2.17. Model MRLM (0100) at di�erent steps forward is interesting. At

step 2 (Figure 2.17a) it is the most skilful model with the lowest median

relative Ignorance (red bar in the box plot) and with the 25th to 75th per-

centile range (blue box) incorporating the lowest relative Ignorance values

of all the multi-model forecasts. By step 3 (Figure 2.17b) however the 25th

to 75th percentile range has now widened to include both the highest val-

ues and lowest values of relative Ignorance. By step 4 (Figure 2.17c) it has

again returned to the one of the most skilful models. For model MRLM the

skill relative to the other models changes by the number of steps integrated

forward.

The value of blending parameter α as the number of steps integrated forward

increases is shown in Figure 2.18 for each model. At step 1 all the models

have α close to 1. At step 2 only MRFT still maintains the high α, the α
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(a) Step 2
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(b) Step 3
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(c) Step 4
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(d) Step 5

Figure 2.17: Comparison of skill relative to climatology for equally weighted
blended models at (a) step 2, (b) step 3 (c) step 4 and (d) step 5. There were
1000 points in both the training and testing sets. Note that the skill for 0100
relative to the other models changes by step.
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Figure 2.18: Blending parameter α as the number of steps integrated forward
increase. As the number of steps increase, α for all the models approaches 0.

for the other models falls slightly. However by step 4 model MRLM has the

highest blending parameter. By step 10 all models have α approaching 0.

It would be interesting to develop this further by considering the skill of each

model for di�erent sections of the systems attractor at di�erent steps, this

is an area of future research beyond the scope of this thesis.

In this chapter only equally weighting the models together is considered, as

the size of seasonal weather model's archives are too small to accurately es-

timate weighting according to the skill of the model [71]. Noise has not been

added to these models but this is also an area worthy of further investigation.

2.7 Conclusions

The basic conversion of ensemble of estimates into a forecast distribution is

not new, neither is the formation of naïve probability distribution. The new
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2.7. Conclusions

things in this section are:

1. Exploration of the state of the art forecasting methods currently in use

by seasonal weather centres using idealised data.

2. Demonstrations of the restrictions from working with a small archive,

the case for all seasonal weather models, is explored using an ide-

alised world in Section 2.3. The limitations are demonstrated by using

relative Ignorance to compare between forecasts from large and small

archives. It is found in our Moran Ricker example that small archives

tend to overestimate the skill.

3. Exploration of the kernel dressing parameters and skill by size of the

forecast-outcome archive is in Section 2.3. The more skill the model has

the smaller the archive has to be for the kernel dressing parameters to

be closer to their asymptotic values. The order for which model has the

most skill is identical across the di�erent sized archives as illustrated

in Figure 2.8.

4. An experiment examines if an equally weighted multi-model forecast

provides the most skill relative to climatology with a large archive of

2000 points. In Section 2.5 the forecast with the most skill is not an

equally weighted combination of all three models but a combination of

the two models.

5. The increase in skill when climatology is included as a separate model

in an equally weighted multi-model forecast is demonstrated for a large
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archive in Section 2.5. Including climatology smooths out the forecast

busts, thus providing forecasts with more skill.

6. Blending individual models with climatology, where the weight of the

blending parameter is set by minimising Ignorance, is in Section 2.6.

Blending isn't new, what is new is blending in the context of an ide-

alised world based around the Moran Ricker Map. Blending models

with climatology improves the skill of the individual model's forecast.

7. Blended forecasts from models equally weighted together are consid-

ered in Section 2.6. Skill scores show that, for these models, the most

skilful forecasts are from this method.

8. A demonstration that di�erent models have di�erent skill at di�erent

steps integrated forward is in Section 2.6.1.
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Crop Modelling

The skill from probabilistic forecasts made by multi-model crop models is

investigated using US maize yield data. In this chapter the ensemble con-

verted into a probabilistic forecast has one member rather than the nine

members used in Chapter 2. Initially, Section 3.1 explains how to convert a

crop model estimate into a forecast distribution [5,79]. Although there have

been other probabilistic crop forecasts [10], using standard kernel dressing

with Gaussians is unique as far as we are aware.

The skill of probabilistic forecasts from the CERES-Maize model is examined

using empirical Ignorance [25, 72] in Section 3.2. To compare skill between

di�erent models relative Ignorance is used, this considers the crop models

relative to a bench mark model [85]. In Section 3.3 persistence is proposed

as a bench mark model instead of climatology.

Various empirical models which forecast crop yield are created in Section 3.4,

these include dynamic climatology [85] and ratio models which both provide
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an ensemble of estimates. Although the dynamic climatology model [85] is

not new, the ratio model appears here for the �rst time. Models which are

kernel dressed using asymmetric kernels are also proposed. The asymmetric

kernels are either from a Gaussian mixture model [62] or a Gamma distribu-

tion. As far as we are aware, kernel dressing using asymmetrical kernels is a

new method for crop modelling.

Comparisons between di�erent methods to set the kernel widths are explored

in Section 3.5. The kernel widths are set using (i) standard deviation of the

errors (or di�erences) and (ii) by minimising Ignorance [18]. Due to the

limited archive available for seasonal crop modelling, σ for both methods

was calculated using leave-one-out cross-validation [85].

The skill of probabilistic forecasts when the CERES-Maize model is equally

weighted with an empirical crop model is explored at country level in Section

3.7. Including empirical models is shown to increase the skill. This exper-

iment is then repeated at state level in Section 3.8, here again including

empirical models increases the skill.

symbol meaning of symbol

C number of outcomes in climatology time series

ē sample mean

Ne number of ensemble members

K Gaussian kernel

n number of points in forecast-outcome archive

µ1, µ2 mixed Gaussian o�sets
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3.1. Creating a probabilistic forecast from a crop model

symbol meaning of symbol

ω1, ω2 mixed Gaussian weights

p(yi) probability for the ith outcome

ri prior ratio of the ith year

σ kernel width

σcl kernel width for climatology

u kernel o�set

Xi is the Ne member ensemble at time i

xji the jth ensemble member of Xi

yi the ith observed outcome

zi the ith rolling maximum outcome

3.1 Creating a probabilistic forecast from a crop

model

The CERES-Maize model produces an annual estimate for US maize yield.

The archive contains one estimate for the years 1979 to 2012, and one out-

come, a total of 35 pairs. The CERES-Maize estimates (red) and the out-

comes (green) are in Figure 3.1. The CERES-Maize model provides quite

accurate yield estimates even when there are large falls in maize yield, such

as the drought year of 1988 [90]. Note that there are also years where

there is a large discrepancy from the model estimate, in particular in 1993,

where the CERES-Maize model failed to predict the steep fall in yield. The
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Figure 3.1: Time series of the CERES-Maize estimates (green) and outcomes
(red). The CERES-Maize estimates are usually quite accurate at predicting steep
falls in maize yield.
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drop in yield in 1993 was caused by wet rot, conditions under which the

CERES-Maize, a physical simulation model, is known not to provide an ac-

curate yield estimate. In 1993 wet rot was known to exist 3 months before

the forecast target date, so the model forecast was known to be irrelevant

well before it was evaluated.

An alternative to providing one estimate is to run an ensemble of weather ap-

proximations through the crop model. This methodology is used by seasonal

weather models to try and mitigate for the observational uncertainty found

in initial conditions [41]. Standard kernel dressing the ensemble creates a

forecast distribution [4]. Given even a singleton ensemble (xi1), this method

can still be used. The archive contains forecast-outcome pairs (pi, Yi) where

pi is the forecast distribution from a singleton ensemble and Yi is the ob-

served outcome at time i. The forecast distribution is made by standard

kernel dressing [4]:

p(y : σi) =
1

n

n∑
i=1

1

σi
K

(
yi − x1i
σi

)
, (3.1)

where n = 35. The singleton ensemble is replaced with a kernel centred on

x1i . The Gaussian kernel K(·) is:

K(ζ) =
1√
2π
e−

1
2
ζ2 (3.2)

Using leave-one-out cross-validation [82] on the errors, the kernel width (σi)

is chosen individually by year, this is discussed more fully in Section 3.5.
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To calibrate the CERES-Maize estimates, the CERES-Maize modellers �t a

linear regression through the estimates and the outcomes [19,37] (see Section

1.5) no o�set u is used in kernel dressing. The values of σi, calculated from

the standard deviation of the errors, are 0.6305± 0.0001.

To determine if the kernel width is wide enough to capture the majority

of outcomes, the forecast distribution is examined for every year. Selected

years are shown in Figure 3.2, these include an average year (1984), a drought

year (1988) and a year with wet rot (1993) [57]. For years 1984 and 1988 the

outcome (red star) has a high probability mass (blue line). For year 1993,

the outcome has a low probability mass. Outcomes should not regularly fall

in very low probability areas, as this would imply that the kernel width is too

narrow. Visual examination of these �gures shows that this is not the case.

In the next section skill from probabilistic forecasts from the CERES-Maize

model are evaluated.

3.2 Crop model skill

To evaluate the skill of probabilistic forecasts from the CERES-Maize model,

the skill score empirical Ignorance is used, as de�ned in Equation 1.14. Em-

pirical Ignorance for the CERES-Maize model by year is shown in Fig-

ure 3.3. Here, with the exception of a few forecast busts, Ignorance is

quite consistent. Large empirical Ignorance scores are in 1993 when the

CERES-Maize model failed to estimate the large fall in maize yield and 2009

when the CERES-Maize model underestimated the yield. The mean empir-

ical Ignorance is 1.36 and the spread of these empirical Ignorance values,
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(a) 1984
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(b) 1988
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(c) 1993

Figure 3.2: The forecast distribution for selected years from the CERES-Maize
model. The forecast distribution is shown as a blue line, the CERES-Maize esti-
mates are shown as green circles and the outcome is shown as a red star for the
years 1984, 1988 and 1993. Notice how the outcome has a high probability mass
for most years.
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Figure 3.3: The skill of the CERES-Maize model. Empirical Ignorance is a green
line, the standard deviation of the empirical Ignorance is a red dotted line and the
mean empirical Ignorance is a red line. The empirical Ignorance all lie within the
mean plus one standard deviations with the exception of years 1993 and 2009.
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Figure 3.4: The robustness of the forecast distribution is demonstrated by com-
paring the empirical Ignorance by kernel width. Here four selected years for the
CERES-Maize model are shown. The best kernel width changes from year to year,
the kernel width for 1993 needs to be wider than the other years.
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measured by standard deviation, is of a similar size 1.35.

To investigate how robust empirical Ignorance is to small changes in the ker-

nel width, kernel width against empirical Ignorance is compared for selected

years in Figure 3.4. Empirical Ignorance changes gradually unless the ker-

nel width becomes too narrow, so small changes in the kernel width will not

signi�cantly alter the value of empirical Ignorance. To be able to compare

models empirical Ignorance is measured against a bench-mark model. The

selection of the bench-mark model is explained in the next section.

3.3 Creating a bench-mark model for crop mod-

elling

In seasonal weather forecasting the standard bench mark model to use is

climatology, from kernel dressing a large set of historical outcomes [24, 36].

For crop modelling climatology is not a suitable bench mark model as the

yield has increased by over 500% between 1866 and 2012 [78]. This means

yield levels at the start of the time series are unlikely to recur towards the end

of the time series, even under adverse weather conditions. Therefore, using

climatology as a bench mark model is not a suitable test of skill. To demon-

strate this climatology is created by kernel dressing the historical outcomes

of US maize. As the maize yield has changed so much only a short time

series from 1970 to 2012 is selected. The static climatological distribution is

converted into a forecast distribution by standard kernel dressing:
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3.3. Creating a bench-mark model for crop modelling

p(y : σcl) =
1

Cσcl

C∑
j=1,j 6=i

K

(
y−yi
σcl

)
(3.3)

Where C is the number of observed outcomes, here 34 and σcl is the ker-

nel width. The Gaussian kernels, centred on yi, are summed. The mean

empirical Ignorance for climatology is 2.42 so, as expected, climatology has

signi�cantly less skill than the CERES-Maize model. The standard devia-

tion of yield is 0.61 so the variation in empirical Ignorance is less than for

the CERES-Maize model. Skill by year is shown in Figure 3.6a, empirical

Ignorance is fairly �at except for the years 1980, 1983, 1988, 1993, 2004 and

2009. Instead of using climatology as the bench mark model, for crop mod-

elling persistence is proposed, where the model's estimate is the previous

year's outcome.

3.3.1 Persistence Model

The persistence model uses the previous years outcome as its estimate,

so for the ith year xi = yi−1. The singleton ensemble (x1i ) is converted

into a forecast distribution by standard kernel dressing. The kernel width

chosen is the median of the standard deviation of the di�erences using

leave-one-out cross-validation [84]. As the yield level changes over time,

di�erences are only considered between consecutive years. The forecast dis-

tribution is:

p(y : σ) =
1

nσ

n∑
i=1

K

(
yi − x1i
σ

)
, (3.4)
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where n is 34. The Gaussian kernel K(·) is described in Equation 3.2. The

kernel width (σ) is 1.13, nearly twice the size of the CERES-Maize kernel

width. The persistence model's estimate and standard deviation from the

forecast distribution are shown in Figure 3.5. The one year lag from the

persistence model estimates (green) to the outcomes (red) is clearly visible.

The persistence model generally does well unless there is a large drop in maize

yield, in these years the estimate falls outside the standard deviations. This

can be seen in years 1983, 1988, 1993 and 2012. The year following a large

drop is also not captured very well, as the estimate is too low.

Forecast distributions for selected years are in Figure C.1. The shape of the

forecast distribution for the persistence model is signi�cantly �atter than

for the CERES-Maize as the kernel width is signi�cantly wider. Empirical

Ignorance for the persistence model is quite robust to small changes in the

kernel width, as shown by the smooth changes in Figure C.2. The ideal σ

should not be too sensitive to error, for example if it was slightly underesti-

mated empirical Ignorance should not quickly approach in�nity. In 2006 the

estimate and the outcome were almost identical, so for this year the narrower

the kernel width the better.

The skill of the persistence model by year is given in Figure 3.6b. The

mean Ignorance, 2.19, shows it has less skill than the CERES-Maize model.

The skill measured relative to climatology is -0.23, the negative value means

the persistence model has more skill than climatology. Of note is that from

1997 onwards the persistence model has more skill than climatology for every

year except 2012, a drought year. As the results show, the persistence model
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Figure 3.5: Time series of the persistence model estimate (green line) with one
standard deviation of the forecast distribution (dotted green line) and outcomes
(red line). By construction the persistence model misses every large fall in maize
yield and the recovery the following year.
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makes a better bench mark model than climatology.

3.3.2 Skill of Crop Models

The skill of the CERES-Maize model relative to the persistence model is

-0.83 and the standard deviation is 1.53, so the CERES-Maize model has

more skill than persistence. The skill by year in Figure 3.7 shows that there

are a few years where persistence has more skill, in particular in 1993 when

the CERES-Maize model does not take into account the impact of wet rot

on maize yield. In the next section three empirical models for predicting

maize yield are developed.

3.4 Empirical Crop Models

Several empirical crop models were built to provide a probabilistic forecast

for maize yield for the year ahead. These empirical crop models were built

solely from historical US maize yields between 1979 and 2012, their skill is

measured relative to the persistence model. As all the empirical crop models

are built using small outcome sets of approximately 35 points, the skill and

kernel widths are estimated using leave-one-out cross-validation.

3.4.1 The Dynamic Climatology Model

The dynamic climatology model [85] builds an ensemble of estimates using

the di�erences between consecutive maize yield outcomes. The jth ensemble

member for year i, xji , is made from the previous years' outcome plus the

di�erences between outcomes:
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(b) Persistence
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(c) Persistence relative to climatology

Figure 3.6: Ignorance by year from (a) the climatology model, (b) the persistence
model and (c) the persistence model relative to climatology. Note the relative
Ignorance shows that the persistence model has more skill in the latter half of the
time series, with the exception of 2012, a drought year.
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Figure 3.7: Skill of the CERES-Maize model relative to the persistence model.
Negative values show the CERES-Maize model has more skill than the persistence
model.
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xji = yi−1 + [yj+1 − yj ], where j = 1, ..., Ne, i 6= j. (3.5)

where Ne is 33. The forecast-outcome pairs are (pi, yi) where pi is the fore-

cast distribution from kernel dressing Xi, a Ne member ensemble, Xi =

[x1i , .., x
Ne
i ] at time i. The forecast distribution from standard kernel dressing

is:

p(y : σ) =
1

Neσ

Ne∑
j=1

K

(
y − xj

σ

)
(3.6)

where the jth ensemble member is replaced with a Gaussian kernel K(·).

The kernel width, estimated from the standard deviation of the di�erences,

is 1.13.

The ensemble of estimates is compared against the outcomes in Figure 3.8.

The outcomes tend to fall in the middle of the ensemble unless there is

a large downwards movement. For example in 1988, a drought year, the

outcome fell just beneath the ensemble. In the year following a large drop

the estimate (that the ensemble members are centred around) is based on

the previous year's low outcome. The following year the outcome usually

returns to previous higher yield levels, so once again the outcome falls in a

low probability area. An example for this is 1989, the year after a drought,

where the outcome fell in a low probability area towards the top of the

ensemble.

The forecast distribution for the dynamic climatology model is shown in

Figure C.3 for selected years. As the kernel width σ is signi�cantly wider the
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Figure 3.8: Time series of the dynamic climatology, ensemble (green dots) and
outcomes (red line). The outcomes are within the ensemble with the exception of
1988 and 1994.
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y-axis di�ers from Figure C.1. Compared to the forecast distribution from

the CERES-Maize model in Figure 3.2, the forecast distribution has lower

values and is signi�cantly �atter. This means that even if the outcome falls

in a high probability area of the forecast distribution, the probability mass

on the outcome will be low. Although the outcomes in the �gures always fall

relatively near to the ensemble members, in 1984 and particularly in 1988

they fall in very low probability areas of the forecast distributions meaning

that for these years empirical Ignorance will be high (corresponding to a

poor score).

The robustness of empirical Ignorance to small changes in the kernel widths

for the dynamic climatology model is shown for selected years in Figure C.4.

The empirical Ignorance changes gradually with the kernel width, there are

no sudden changes unless the kernel width approaches zero. The shape of

empirical Ignorance by kernel width in 2006 is di�erent from the others.

From the forecast distribution plot in Figure C.3 it is seen that the outcome

falls almost exactly in the highest probability area, so for this particular year

the smaller the kernel width the better. Kernel width, however, is not set

independently for each year, but as a best �t across all the years.

The skill of the dynamic climatology model is shown in Figure 3.9a where

the mean relative Ignorance at 0.19 (in red) is higher than the mean relative

Ignorance from the CERES-Maize model in Figure 3.7, but the standard

deviation is signi�cantly lower. The dynamic climatology model has less

skill than the CERES-Maize model but lower standard deviation, so there is

less variability in relative Ignorance.
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(a) Dynamic Climatology
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(c) Asymmetric

Figure 3.9: Skill of the dynamic climatology model, the ratio model and asym-
metric model relative to the persistence model. The ratio model (b) has more skill
than the other models.
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Figure 3.10: Time series of the ratio model ensemble (green) and outcomes (red).
The ensemble members are not evenly spread across the yield axis, there is a gap
between the lowest ensemble members and the others.

3.4.2 Ratio Model

The ratio model creates an ensemble of estimates based around the rolling

maximum of the three previous years outcomes zi:

zi = max[yp], where p = i− 1, i− 2, i− 3 (3.7)

When i ≤ 3 the maximum is taken over the number of years available. As an

example for 1987 the ratio model estimate is 7.32 which is the maximum of
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the three previous outcomes 6.11, 6.55 and 7.32. The ensemble is created by

multiplying the rolling maximum by a series of ratios ri, using the outcome

from the year ahead:

ri =
yi+1

zi
(3.8)

xji = [zirj ], where j = 1, ..., Ne, i 6= j, (3.9)

where Ne, the number of ensembles, is 33. There is no ensemble for 2012

as there is no outcome for 2013 to calculate the ratio from (Equation 3.8).

Several years have very similar probabilistic forecasts as their ensembles are

so similar, for example the years 1983, 1984 and 1985. The outcomes usually

fall within the ensemble as shown in Figure 3.10, unless there is a year with

adverse weather. The year after adverse weather the outcomes are again

contained within the ensemble, unlike the dynamic climatology model.

The forecast distribution of the ratio model in Figure C.5 is much �atter than

the CERES-Maize model as the kernel width is much wider. The ensemble is

not as wide as the ensemble from the dynamic climatology model in Figure

C.3. Although both the ratio model and the dynamic climatology model

have identical kernel widths (1.13) the ensemble members of the ratio model

are not as spread out, so the forecast distribution is not as �at. Small

changes in the kernel width do not signi�cantly e�ect the value of empirical

Ignorance except in the case where the kernel width is approaching zero

(Figure C.6.) Years such as 1988 and 1993 where severe adverse weather
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negatively impacted the yield are expected to require wider kernel widths

than average. The kernel width is selected as a best �t across all the years

rather than one individual year.

The skill of the ratio model by year is shown in Figure 3.9b. Compared to

dynamic climatology there are larger negative values and a higher standard

deviation. The skill is mean relative Ignorance (with standard deviation of

0.75), so the ratio model has more skill than the persistence and dynamic

climatology models, but less skill than the CERES-Maize model.

3.4.3 Asymmetric Model

In the maize yield time series (red) in Figure 3.11b downward movements,

caused by adverse weather conditions, are much greater than upward move-

ments. The exception is when the upward movement is a retracement from

a large fall the previous year. Although adverse weather has a large nega-

tive impact on yield, this normally only impacts the yield for one year. The

asymmetric model estimate is the rolling maximum of the three previous

years outcomes (Equation 3.7). This is converted into a forecast distribution

by kernel dressing using an asymmetric kernel, where the kernel is larger for

negative falls in yield than for positive increases.

To construct the asymmetric kernel, errors between the model estimates and

outcomes are calculated. A Gaussian mixture model [14] is �tted to these

errors using leave-one-out cross-validation. The parameters of the Gaussian

mixture model are chosen using the EM algorithm [16]. The Gaussian mix-

ture model is a combination of two Gaussians:
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Y1 ∼ N(µ1, σ
2
1),

Y2 ∼ N(µ2, σ
2
2),

Y = (1−∆)Y1 + ∆Y2,

where ∆ is either 0 or 1 and P (∆ = 1) = ω. Let φθ(y) be the Gaussian den-

sity with parameters θ = (µ, σ2). The parameters are �tted using maximum

likelihood:

θ = (ω, µ1, σ
2
1, µ2, σ

2
2) (3.10)

Given the training set Z = y1, . . . , yn. The log-likelihood is:

`(θ;Z) = Σn
i=1 log[(1− ω)φθ1(yi) + ωφθ2(yi)] (3.11)

As ∆ are unknown, they are considered latent variables ∆i taking values of

either a 0 or 1. If ∆i = 1 then Yi was from model 2, otherwise it came from

model 1. The log-likelihood then becomes:

`0(θ;Z,∆) = Σn
i=1[(1−∆i) log φθ1(yi) + ∆i log φθ2(yi)]

+Σn
i=1[(1−∆i) logω + ∆i log(1− ω)]

(3.12)

where the maximum likelihood estimates of µ1 and σ
2
1 are the sample mean
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and variance when ∆i = 0. For µ2 and σ
2
2 the sample mean and variance are

when ∆i = 1. As the values are unknown the EM Algorithm is used:

1. An initial guess for the parameters µ̂1, σ̂
2
1, µ̂2, σ̂

2
2 and ω̂

2. Expectation Step: calculate the responsibility of model 2 for observa-

tion i E(∆i|θ, Z) = P (∆i = 1|θ, Z).

γ̂i =
ω̂φθ̂2(yi)

(1− ω̂)φθ̂1(yi) + ω̂φθ̂2(yi)
, i = 1, ..., n. (3.13)

3. Maximization Step: weighted means and variances are calculated

µ̂1 =
Σn
1=1(1− γ̂i)yi
Σn
i=1(1− γ̂i)

,

σ̂21 =
Σn
i=1(1− γ̂i)(yi − µ̂1)2

Σn
i=1(1− γ̂i)

,

µ̂2 =
Σn
i=1γ̂iyi

Σn
i=1γ̂i

,

σ̂22 =
Σn
i=1γ̂i(yi − µ̂1)2

Σn
i=1γ̂i

where the weight is ω̂ = Σn
i=1

γ̂i
n .

4. Iterate until convergence

The asymmetric kernel dressing parameters are chosen as the median of the

n kernel dressing parameters calculated using leave-one-out cross-validation.

The EM algorithm used to estimate the mixed Gaussian parameters is im-

plemented using Matlab 2011a [48]. The results are shown in Figure 3.11a,
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Table 3.2: Gaussian mixture parameters for the asymmetric model

Gaussian mixture µ kernel width weight

Kernel 1 -0.16 0.36 0.87

Kernel 2 -2.1 0.09 0.14

where the forecast distribution from both the errors and the Gaussian mix-

ture are normalised. Most of the forecast distribution from the mixed Gaus-

sian (in green) is centred around the smaller errors, however there is a second

smaller Gaussian centred on the larger errors. The probability from Kernel 1

has the highest weight of 0.87. The kernel width of Kernel 2, furthest away

from the asymmetric model estimate, is surprisingly narrow at 0.09. The

forecast distribution is:

p(y|u1, σ1, u2, σ2, ω) =
ω

nσ1

n∑
i=1

K

(
yi − xi − µ1

σ1

)
+

(1− ω)

nσ2

n∑
i=1

K

(
yi − xi − µ2

σ2

) (3.14)

The asymmetric model estimate and the standard deviation of the forecast

distribution are shown in Figure 3.11b. By design the asymmetric kernel

causes the standard deviation (green dotted line) of the forecast to be larger

below the model estimate than above the model estimate. The asymmetric

kernel seems a bit too narrow, quite a few positive outcomes fall outside

one standard deviation such as the years 1992, 1994, 2004 and 2009. Boot-

strap resampling, however, may provide a better estimate as there are so few

points.
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Figure 3.11: Fig 3.11a: The forecast distribution of the asymmetric kernel (green)
and sample (blue). Note the second smaller kernel for negative falls. Fig 3.11b.
Notice the asymmetric kernel is wider at the bottom than the top.
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The shape of the asymmetric kernel is shown in Figure 3.12 for selected

years, the two separate Gaussians from the mixed Gaussian can clearly be

identi�ed. There is a large area between the two Gaussians which has very

low probability, if an outcome fell between the two Gaussians it would have

a very low probability mass. In 1988, a drought year, the outcome (red star)

falls into the smaller Gaussian kernel and so has a higher probability mass

than the other empirical models.

The behaviour of the empirical Ignorance if the kernel width changed slightly

was explored in Figure 3.13. Empirical Ignorance is quite robust to small

movements in the kernel width.

The skill for the asymmetric model is shown in Figure 3.9c. With a mean

relative Ignorance of 0.50 and a standard deviation of 4.51 it is the empirical

crop model with the least skill. In 1980 and 1995 the outcome fell in the low

probability area between the two mixed Gaussians and in 2004 the outcome

fell outside the the two mixed Gaussians.

Although the asymmetric model's kernel dressing parameters were chosen

using the EM algorithm, the skill of the model is assessed by empirical

Ignorance. The e�ect on skill if the kernel dressing parameters are altered

is explored. If σ1 for Kernel 1 is changed, while all the other parameters

are held constant, is in Figure 3.14a. The e�ect on empirical Ignorance on

changing σ1 was very small, it drifts downwards as the width of the kernel

increases. The skill of the asymmetric model if σ2 (for Kernel 2) was changed

is shown in Figure 3.14b. The narrower σ2, the more skill the asymmetric

model has. Next the weight (ω) was examined in Figure 3.14c. Here the
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Figure 3.12: The estimated probabilistic density function by year for the asym-
metric model. The two separate Gaussians are clearly identi�ed and there is an
area of low probability between them.
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Figure 3.13: The kernel width by year for the asymmetric model. Unless the
chosen kernel width is too narrow, the empirical Ignorance is quite robust.
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smaller ω became, the more skill the asymmetric model had. It was found

that adding an o�set to the asymmetric kernel improved the skill, but this

is beyond the scope of this thesis.

3.4.4 Gamma Model

As the mixed Gaussian model has an area of low probability between the

two kernels, a di�erent asymmetric kernel model is tested using the Gamma

distribution as the kernel. For the Gamma model, the singleton ensemble is

from a one step ahead linear regression. This estimate is converted into a

forecast distribution by kernel dressing using a negative Gamma distribution.

A negative Gamma distribution is used to capture the very low yields in

years with adverse weather conditions. The linear regression and Gamma

distribution parameters are simultaneously �tted using maximum likelihood

estimation. For this a generalized linear model (glm) is implemented in R,

with the Gamma family link set as inverse [65]. This means the generalized

linear model formula for the mean becomes:

E(Yi) =
1

a+ bui
(3.15)

where a is the intercept, b is the parameter, E(Yi) is expected yield and ui

is the year from i = 1, ..., n. To �t a negative Gamma distribution using the

generalized linear model the following ad hoc method is used. Constant C0

is added and the yield subtracted, so the mean becomes:
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Figure 3.14: The skill of the asymmetric model when 3.14a σ1 from the 1st mixed
Gaussian is altered, 3.14b when σ2 from the 2nd mixed Gaussian is altered and
3.14c the weight (ω) is altered. There are no sudden jumps in empirical Ignorance
for the three kernel dressing parameters.
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C0 − E(Yi) =
1

a+ bui
(3.16)

To examine what value C0 should be, the Gamma model used a range of

values. How well the model with a given constant C0 �ts the data is de-

termined in an ad hoc way by the Akaike's Information Criterion (AIC) [1].

The results are shown in Figure 3.15, the lowest AIC, and therefore the bet-

ter �t, is when C0 is 21 or 22. The AIC increases if C0 becomes too small or

too large. Setting C0 to approximately twice the maximum yield provides

the best �t. From now on C0 is simply taken as a constant.

The parameters estimated using maximum likelihood estimation for the

mean are:

21− E(Yi) =
1

−1.1823774 + 0.0006311ui
(3.17)

To remove C0 from the formula and calculate negatively distributed Gamma,

Equation 3.17 is rearranged as:

E(Yi) = −
(

1

−1.1823774 + 0.0006311ui
− 21

)
(3.18)

The E(Yi) is the expected value of the negative gamma distribution, see

Equation 3.19 where α is the shape (α > 0) and βi is the rate (β > 0) which

changes for each year i. While �tting the parameters in Equation 3.17, α is

also calculated as 306.4197†

†The glm function in R only provides an approximation for α. A more accurate
measurement of α is found using the glm summary information and the R function

139



15 20 25 30 35
82.2

82.3

82.4

82.5

82.6

82.7

82.8

82.9

83

constant

A
IC

Figure 3.15: Value of AIC by C0. Note that when C0 is 21 or 22 the AIC is lowest.
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E(Yi) = αβi (3.19)

The βi parameter for year i is then calculated by rearranging 3.19 and sub-

stituting:

βi =
E(Yi)

α
(3.20)

βi = − 1

α

(
1

−1.1823774 + 0.0006311ui
− 21

)
(3.21)

The variance is calculated as:

V ar(Yi) = αβ2i (3.22)

std(Yi) =
√
αβi (3.23)

A comparison between the Gamma model forecasts and observations is pre-

sented in Figure 3.16. In years with extreme weather the yields fall outside

twice the standard deviation of the probabilistic forecast, for example in the

drought years 1988 and 2012.

The �tted distribution function of the yield for selected years are shown in

Figure 3.17. As the α parameter for the Gamma distribution is so high the

kernel is quite similar to a Gaussian kernel. In years where there is a large

fall in yield, the probability mass on the outcome is very low as in Figure

3.17b.

gamma.shape [91].
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Figure 3.16: The Gamma model forecast (green) and the observations (red). In
years with adverse weather such as a drought in 2012 the observation falls outside
the standard deviation (dotted green line).
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Figure 3.17: The estimated probabilistic density function by year for the gamma
model. As the α parameter is high the kernel shape is quite similar to a Gaussian
kernel.
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Model Basis Kernel dressing params

CERES-Maize errors
(yi − xi)

σi = 0.6305± 0.0001

Persistence di�erences
(yi+1 − yi)

σ=1.13

Dynamic Clim di�erences
(yi+1 − yi)

σ=1.13

Ratio di�erences
(yi+1 − yi)

σ=1.13

Asymmetric errors
(yi − xi)

σ1 = 0.09, u1 = −2.1,
σ2 = 0.36, u2 = −0.16

Table 3.3: A summary of kernel width (σ) by model.

3.5 Estimating the kernel width

Kernel widths (σ) are chosen as the standard deviation across a set of er-

rors (or di�erences). Using leave-one-out cross-validation creates a set of σ

estimates and the model used the median across this set. A summary of

kernel widths by crop model is in Table 3.3. In seasonal weather forecasts

kernel dressing parameters were chosen by minimising Ignorance [18], dis-

cussed in Section 1.10. In this section, these two di�erent methods to choose

the kernel widths are compared for crop models.

Empirical Ignorance by kernel width is shown in Figure 3.18 as blue dots.

For all the crop models, as the kernel width becomes narrower, the skill

increases until eventually the kernel width becomes too narrow. At this point

empirical Ignorance becomes unstable, rapidly moving towards in�nity with

only a small decrease in kernel width. To compare the two methods the

kernel width set by the standard deviation of the errors (or di�erences) is

shown as a red dotted line and the kernel width set by minimising Ignorance
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(b) Dynamic Climatology
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Figure 3.18: The empirical Ignorance by kernel width is shown in blue. The
kernel width, from the standard deviation of the di�erences (or errors), is in red.
The kernel width from minimising Ignorance is in green. Minimising Ignorance has
the narrowest kernels, and so the most skill, for all the empirical models.
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is shown as a green dotted line. For the CERES-Maize model in Figure 3.18a

both methods choose very similar sized σ, across all the crop models this is

the narrowest σ. With the persistence model, Figure 3.18c, both kernel

widths are again close although when σ is chosen by minimising Ignorance

it is slightly smaller. For both the dynamic climatology model and the ratio

model in Figures 3.18b and 3.18d the kernel from minimising Ignorance is

signi�cantly narrower.

3.6 Kernel dressing methods and skill

The skill of probabilistic forecasts, where the kernel width was chosen by

di�erent methods, was determined for each model by considering the mean

empirical Ignorance and the 5% to 95% bootstrap resampling intervals of

the empirical Ignorance. The x-axis shows empirical Ignorance when kernel

widths are chosen by minimising Ignorance. The y-axis shows Ignorance

when kernel widths are chosen by the standard deviations of the errors (or

di�erences). Both methods use leave-one-out cross-validation with the kernel

width used by the model, the median of the n estimates.

The model with the most skill for both kernel width selection methods is

the CERES-Maize model (green). As the CERES-Maize falls directly on

the diagonal line there is little di�erence in skill between the two methods.

The same is true for the persistence model (red), which also crosses on the

diagonal line. All the other models fall above the line, so choosing the kernel

width by minimising Ignorance provides more skill. The order of model skill

remains consistent across both methods for choosing the kernel width.
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Figure 3.19: Comparison of skill when the kernel widths are chosen by di�erent
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the kernel width is chosen using drop one out errors (y-axis). Notice that CERES-
Maize is the model with the most skill, irrelevant of how the kernel widths are
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The ratio model (cyan) and the dynamic climatology model (blue) cross

above the diagonal line. For these empirical models choosing kernel widths

by minimising Ignorance produces a more skillful forecast. The bootstrap

resampling intervals, however, are much wider when minimising Ignorance

is used.

Skill relative to persistence when the kernel widths are chosen by minimis-

ing Ignorance, with the exception of the asymmetric and gamma model, are

shown in Figure 3.20. The ratio model has signi�cantly more skill than the

other empirical models. The bootstrap resampling interval for the asymmet-

ric model is signi�cantly larger than the other models. In the next section

it is examined whether the skill of probabilistic forecasts is improved by

including an empirical model in a multi-model forecast.

3.7 Multi-model crop forecasts

Does a probabilistic forecast from a multi-model crop model have more skill

than a single crop model? Here results are examined when two crop model

forecasts are equally weighted together. For all the models, except the asym-

metric model and the gamma model, the kernel widths have been selected

by minimising Ignorance.

Skill relative to persistence, is shown in Table 3.4. For single models, the

�one� column, the CERES-Maize model has the most skill and the asymmet-

ric model the least. However, when two models are equally weighted, the

multi-models with more skill than persistence are the CERES-Maize with

the asymmetric model, a skill score of -0.90, and the CERES-Maize with
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the ratio model, a skill score of -0.84. This is a surprising result for the

asymmetric model, as it is the crop model with the least skill. When it is

combined with the CERES-Maize model however, the probabilistic forecast

improves.

Table 3.4: Skill relative to persistence for single models (1 model) and two equally
weighted models.

model one CERES ratio dyn clim asym pers gam

CERES -0.82 -0.82 -0.84 -0.61 -0.90 -0.65 -0.79
ratio -0.54 -0.84 -0.54 -0.33 -0.52 -0.38 -0.64

dyn clim 0.10 -0.61 -0.33 0.10 -0.30 0.04 -0.28
asym 0.51 -0.90 -0.52 -0.30 0.51 -0.37 -0.44
gamma 0.28 -0.79 -0.64 -0.28 -0.44 -0.30 0.28
pers 0 -0.65 -0.38 0.04 -0.37 0 -0.30

Figures 3.21 and 3.22 compare the skill between forecasts from a single mod-

els and two equally weighted models. The single model is on the left in

green and the two equally weighted models are on the right in blue. The

x-label shows the name of the single model on the left and the name of the

second model (that this is equally weighted with) on the right. A single

+ sign means there is no second model. The mean skill, measured relative

to persistence, is the dot in the middle and the vertical lines represent the

5% and 95% bootstrap resampling interval. The horizontal line, at zero, is

the skill of the bench mark model, persistence. It is important to note that

bootstrap resampling is not the same as standard deviation. The bootstraps

are asymmetric, not symmetrical and therefore Gaussian distribution cannot

be assumed.
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In this section the focus is on forecasts from equally weighted models and how

they compare with forecasts from the CERES-Maize model. Our conclusions

are as follows:

1. Figure 3.21a, compares the CERES-Maize model (in green) against

the CERES-Maize model equally weighted with an empirical model,

on average the CERES-Maize is not always the model with the most

skill.

2. Equally weighting the CERES-Maize model with the asymmetric model

slightly improves the skill, but does not reduce the spread of the boot-

strap resampling interval.

3. Equally weighting the CERES-Maize model with the ratio model, slightly

improves the skill and provides a smaller bootstrap resampling interval.

4. As both the CERES-Maize and asymmetric models have the widest

bootstrap resampling intervals, equally weighting these two models

does not reduce this interval.

5. Figure 3.23 shows the skill relative to the CERES-Maize model. In this

Figure a negative score means the equally weighted model has more

skill than the CERES-Maize model.

6. When the additional model is the asymmetric model the skill is nega-

tive, indicating more skill than the CERES-Maize model. Under boot-

strap resampling only 59.9% of the results are less than zero, indicating

this might not be robust.
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7. When the additional model is the ratio model the skill is negative.

Under bootstrap resampling only 58.6% of the results are less than

zero, indicating this might not be robust.

8. For all the other equally weighted models both the skill and more

than 50% of the bootstrap resampling are above zero suggesting the

CERES-Maize model provides a probabilistic forecast for yield with

more skill.

3.8 Multi-model forecasting at US state level

The eight states which produced the most maize (by volume) in 2013 are

listed below in Table 3.5 [78]. From these eight states only two states, Ne-

braska and Kansas, are mainly irrigated [78].

Table 3.5: Volume of maize produced by the top eight maize producing states in
2013

State volume (bushels) volume (%)

Iowa 2,161,500,000 18.4
Illinois 2,100,400,000 17.9
Nebraska 1,623,500,000 13.8
Minnesota 1,304,000,000 11.1
Indiana 1,035,450,000 8.8
South Dakota 808,680,000 6.9
Ohio 661,980,000 5.6
Kansas 508,000,000 4.3

How much skill does the CERES-Maize model have at forecasting US state

level maize yield? The kernel width was set individually for each US state
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(a) CERES-Maize
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Figure 3.21: Comparison of skill between a single model and two equally weighted
models for the CERES-Maize, Ratio and Dynamic Climatology model. The top and
bottom of the line represent the 5% and 95% bootstrap resampling interval. Notice
how the most skillful model is the equally weighted CERES-Maize and asymmetric
models in (a).
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Figure 3.22: Comparison of skill between a single model and two equally weighted
models for the asymmetric, persistence and gamma model.
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Figure 3.23: CERES-Maize: the skill is relative to the CERES-Maize model.
When CERES-Maize is equally weighted with the ratio model and the asymmetric
model it has more skill than the CERES-Maize model
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Chapter 3. Crop Modelling

by minimising Ignorance [18]. The skill in Table 3.6 is measured relative

to the persistence model. A negative score shows the probabilistic forecasts

from the CERES-Maize model have more skill than persistence. Here again

just the results of the models with the most (and least) skill are considered.

The skill for probabilistic forecasts for the top eight maize producing states

is shown in Figure 3.24a. For clari�cation:

1. The states with more skill are Illinois (-1.13), Indiana (-1.11) and Ohio

(-1.05).

2. The state with least skill is South Dakota with a mean relative Igno-

rance of -0.09, hardly beating persistence. The CERES-Maize model

has less skill at forecasting yield for South Dakota than any other state.

3. There is little di�erence in the skill of probabilistic forecasts from irri-

gated states (Nebraska and Kansas) and non-irrigated states.

Table 3.6: Skill of the CERES-Maize model relative to persistence for 8 states.

State rel Ign 5% 95%

Iowa -0.46 -0.96 -0.05
Illinois -1.13 -1.50 -0.74
Nebraska -0.35 -0.80 0.15
Minnesota -0.41 -0.96 0.08
Indiana -1.11 -1.50 -0.74
South Dakota -0.09 -0.58 0.43
Ohio -1.05 -1.44 -0.68
Kansas -0.44 -0.95 0.32

If two crop models are equally weighted together, which multi-model provides
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(b) Multi-models

Figure 3.24: Fig 3.24a: Comparison of skill relative to persistence for the CERES-
Maize model for the top eight maize producing states. The more skillful CERES-
Maize models are the states of Illinois, Indiana and Ohio. Fig 3.24b: Comparison
of the most skillful equally weighted crop models by state. For 7 out of 8 states the
most skillful multi-model is CERES-Maize with the ratio model.
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forecasts of yield with the most skill, relative to persistence, by US state?

The results are in Figure 3.24b. Our conclusions are as follows:

1. The multi-model with the most skill is consistently the CERES-Maize

with the ratio model for each state apart from Iowa.

2. The bootstrap resampling intervals have not signi�cantly decreased by

using a multi-model.

3. For Iowa the multi-model with the most skill is the CERES-Maize with

the asymmetric model, here again the bootstrap resampling intervals

remain approximately the same size.

Although these results show us that there is an improvement in the average

skill if the CERES-Maize model is equally weighted with an empirical model,

it does not show whether or not this improvement is signi�cant. To consider

this the skill of the CERES-Maize model is compared directly against the

models which have the most skill by state. There are three models which have

the most skill by state, the ratio model, the CERES-Maize and ratio model

and �nally the CERES-Maize and asymmetric model. The skill relative to

the CERES-Maize model is shown in Figure 3.25. Di�erent US states have

di�erent models with the most skill. In summary:

1. For Iowa the multi-model CERES-Maize with the asymmetric model

has the most skill, though all three models have negative relative

Ignorance so more skill than the CERES-Maize model.

2. For Illinois and Indiana the CERES-Maize model has the most skill.
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3.8. Multi-model forecasting at US state level

3. The multi-model CERES-Maize and ratio has the most skill in Ne-

braska, Minnesota, Ohio and Kansas.

4. For South Dakota the ratio model has the most skill, for this state the

CERES-Maize model had low skill. All three models have more skill

than the CERES-Maize model.

5. The asymmetric model only has more skill than the CERES-Maize

model for Iowa and South Dakota.

6. The CERES-Maize and ratio model tend to have the most skill, or

almost the most skill across all the states.

The results are shown in Table 3.7 where South Dakota, Iowa and Nebraska

have noticeable improvements in skill from the CERES-Maize model. Skill

for Illinois obviously remains the same but the skill for Indiana and Ohio have

little di�erence between the CERES-Maize model and the multi-model.

Table 3.7: Model with the most skill relative to persistence by state.

State model rel Ign 5% 95% > 0(%)

Iowa CERES+asym -0.73 -1.08 -0.43 97.1
Illinois CERES -1.13 -1.53 -0.76 0
Nebraska CERES+ratio -0.57 -0.87 -0.30 92.4
Minnesota CERES+ratio -0.71 -1.12 -0.36 94.9
Indiana CERES+ratio -1.11 -1.43 -0.82 30.2
South Dakota ratio -0.56 -0.85 -0.26 96.8
Ohio CERES+ratio -1.41 -1.73 -1.15 99.1
Kansas CERES+ratio -0.66 -0.95 -0.44 64.3

Equally weighting the CERES-Maize model with an empirical model can

increase the skill relative to persistence, though which model to use depends
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Figure 3.25: Comparison of the top three models relative to the CERES-Maize
model. For Illinois and Indiana the CERES-Maize model provides the best forecast.

on the state. If a CERES-Maize forecast for a particular state has low skill,

an empirical model may provide more skill.

The fact that data is scarce, that it will take years to get considerable

more data and that available observations, where known, were training the

CERES-Maize model makes it di�cult for any near term future research to

establish signi�cance with con�dence.

3.9 Conclusions

1. A new methodology and illustration for the construction of a proba-

bilistic forecast from a crop model is in Section 3.1.

2. Establishing a baseline using as a bench mark model an empirical model
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from maize yield observations, persistence, is explained in Section 3.3

3. The development of a new empirical crop model which creates an en-

semble around a rolling maximum using ratios is in Section 3.4.2.

4. The development of a new empirical crop models using asymmetric

kernels is in Section 3.4.3 and Section 3.4.4. To our knowledge this the

�rst time an asymmetric kernel has be used in crop modelling.

5. Why minimising Ignorance to select kernel widths provides probabilis-

tic forecasts with the most skill is shown in Figure 3.19

6. Comparison of the skill of single crop models relative to persistence

for US maize when the kernel widths have been set by minimising

Ignorance is in Figure 3.20. The CERES-Maize model has the most

skill and the ratio model is the empirical model with signi�cantly more

skill than the others.

7. Which two crop models equal weighted together have the most skill

is examined in Section 3.7. Figure 3.23 shows equally weighted the

CERES-Maize and asymmetric models has the most skill.

8. The skill of the CERES-Maize model at state level is in Figure 3.24a.

Forecasts for South Dakota have signi�cantly less skill than other

states.

9. The most skillful model or multi-model by state is in Section 3.8. In

Figure 3.25 it is demonstrated that including an empirical model can

improve the skill of the CERES-Maize probabilistic forecasts.
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Chapter 4

Analysis of weather and yield

Accurate estimates of weather across crop growing areas are a useful tool

for predicting the variability in crops. Weather has a large non-linear im-

pact on yield, particularly when there are adverse weather conditions such

as drought [44, 64, 75, 77, 97]. This chapter considers the impact of daily

meteorological observations on maize yield. Daily observations from the

USHCN [52] are examined in Section 4.1, along with the quality of these

observations for Iowa, the US State which produces the largest amount of

maize. The timing of any adverse weather events in the crop cycle of maize

is important. For example in Iowa maize is usually planted during April

and May and delays to this can impact yield [58]. Another key date is the

harvesting of maize during October and November [58]. The main causes

of observational uncertainty in the meteorological observations time series

from the USHCN are reviewed in Section 4.2.
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Chapter 4. Analysis of weather and yield

Drought and extreme wet weather causes maize yield levels to fall [57]. Ad-

ditionally, high temperature alone can cause crop failure [30,45], particularly

if it coincides with the �owering stage of the crop cycle. In Section 4.3 the

impacts from the highest daily tmax and precipitation on maize yield are

considered. The number of days greater than 29oC and yield is also exam-

ined.

Maize yield at county level for the state of Iowa is explored in Section 4.4.

The CERES-Maize modellers calibrate for technical advancements by �t-

ting a simple linear regression through both the outcomes and the fore-

casts [19, 37], as discussed in Section 1.5. In Section 4.4 the variability in

slope parameters from �tting a linear regression to the maize yield time series

is examined. Adverse weather events on maize were examined by considering

the year with the largest percentage fall in maize yield for each county in

Iowa. The impact on the surrounding counties between years was compared.

This information, presented graphically, is new as far as we are aware.

Disentangling variation in maize yield time series caused by weather from

variation caused by technical advancements is di�cult. Improvements from

technical advancements cause maize yield to increase in a non-linear manner,

as do favourable weather conditions. In Section 4.5 a new method is put

forward to better identify the technical advancements in the yield curve.
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4.1. Meteorological observations from Iowa

4.1 Meteorological observations from Iowa

The meteorological observations considered in this section are from weather

stations operated by the USHCN [52]. The stations are generally located in

rural areas or small towns and are spread throughout the US. The weather

stations record �ve daily variables: tmin, tmax, precipitation, snowfall and

snowfall depth. Alongside the daily readings are �ags which highlight any

suspected problems with the quality of the daily readings. The analysis in

this chapter uses forty one years of meteorological observations from Iowa.

The years are 1970 to 2010, the most recent available when the data was

downloaded from http://cdiac.esd.ornl.gov/epubs/ndp/ushcn/ushcn.html on

1st December 2013.

4.1.1 Location of weather stations in Iowa

In Iowa there are 23 USHCN weather stations spread evenly across the state,

each located in a di�erent county, as shown in Figure 4.1. Details of the

location and symbol representing each weather station are shown in Table

4.1. Each weather station is identi�ed by a unique code where the �rst two

digits identify the state (see Appendix D). Although not every county has

a weather station, in this chapter the meteorological observations from the

weather stations are used as a proxy for the weather in Iowa.
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Meter Code County Code County Name Symbol

130112 135 Monroe ·
130133 109 Kossuth ·
130600 11 Benton ·
131402 67 Floyd ·
131533 145 Page ·
131635 45 Clinton ·
132724 63 Emmet ·
132789 101 Je�erson ◦
132864 65 Fayette ◦
132977 189 Hancock and Winnebago ◦
132999 187 Webster ◦
134063 181 Warren ◦
134142 83 Hardin ◦
134735 149 Plymouth ◦
134894 85 Harrison *

135769 159 Ringgold *

135976 87 Henry *

135952 37 Chickasaw *

137147 119 Lyon *

137161 25 Calhoun *

137979 21 Buena Vista *

138296 171 Tama 4
138688 183 Washington 4

Table 4.1: The USHCN weather stations in Iowa, their county and the symbol
used in this thesis to represent them.
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Figure 4.1: Location of USHCN weather stations in Iowa. Note that although the
weather stations are evenly spread throughout Iowa, there is not a weather station
in every county.

symbol meaning of symbol

tmax daily maximum temperature

t̄max,m monthly mean of tmax

t̄max,y yearly mean of tmax

t̄max,ay mean across all years tmax

t1max highest daily tmax in the year

t̄1max mean highest t1max across all the years

tmin daily minimum temperature

t̄min,m monthly mean of tmin
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Figure 4.2: Monthly t̄max,m in Iowa. On average higher t̄max,m are during the
months June, July and August.

4.1.2 Maximum temperature

A summary of the mean monthly maximum temperatures (t̄max,m) is shown

in Figure 4.2. Each blue point represents the monthly t̄max,m for a year at a

weather station. The red squares show the mean of t̄max,m for the relevant

month. The seasonality of t̄max,m is clearly seen in the �gure.

To de�ne whether the year's mean maximum temperature (t̄max,y) is warmer

or cooler than average, the anomaly is calculated. The anomaly measures the

individual year's deviation from the overall average maximum temperature

(t̄max,ay), as shown in Figure 4.3. For each year a blue dot represents the

mean anomaly across all the weather stations in Iowa. An average year

would have an anomaly that is approximately zero, a warmer than average
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1970 1975 1980 1985 1990 1995 2000 2005 2010
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

2.5

year

an
om

aly
 (° 

C)

Figure 4.3: Annual anomalies measured from the t̄max,ay in Iowa. Note that 1981,
1987 and 1988 all have large positive anomalies, so are warmer than an average year.

year would have a positive anomaly and a cooler than average year a negative

anomaly. The warmest year, shown by the largest positive anomaly, is 1987.

Maximum temperature (tmax), is an important variable for predicting crop

yield, as just a few days, or even hours, with a very high tmax can negatively

impact yield [30]. The highest tmax in a year, t1max, is shown by weather

station in Figure 4.4. The symbols represent the individual weather stations

and the black line is the average across all weather stations. In Iowa 1988 had

the highest mean t1max (t̄1max) although some individual weather stations

recorded higher maximums in 1974 and 1975. In 1998 maize yield in Iowa

was signi�cantly lower than average because of a severe drought [90]. The

lowest t̄1max year was 1993, another year when maize yield was low. Weather

stations located in the North East of Iowa such as * (for weather station

135952 in Chickasaw) tend to have higher tmax than the other counties.
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Figure 4.5: The mean of the highest tmax in the years 1970 to 2010 (t̄1max,ay) by
county in Iowa. Counties located in the West and South have higher temperatures
shown by the orange and yellow colours.

For each county, the mean highest tmax (t̄1max) across 40 years is shown in

Figure 4.5. The hotter counties are shown as red and the cooler counties are

shown as blue. White indicates there are no weather stations in that county.

Counties located in North East Iowa tend to report cooler temperatures than

counties located in West or South Iowa. The di�erences between counties

can be more than 2◦C.

4.1.3 Quality Control for Meteorological Observations

USHCN check the quality of the meteorological observations and �ag any

suspected erroneous readings [52]. The �ags are coded to explain why a

reading failed the quality check. Readings that pass the quality check have

no �ags. The �ag codes are shown in Tables 4.3, D.2 and D.3. Any missing
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readings are usually marked with -9999. In addition, if there are less than

31 days in a month, the missing days are marked with -9999. In practice,

however, missing readings are not always marked this way, instead there are

several large gaps in individual weather station's time series.

The codes from �ags used for tmax readings in Iowa are summarised in Table

4.4. In all 99.06 % qflag were not set, as the readings had passed the USHCN

quality checks. The code with the next highest count was the qflag I, where

the tmin was greater than the tmax in 0.92% of the readings.

The analysis in this chapter only includes meteorological observations where

the qflag is not set. Other exclusions are for monthly (or annual) estimates

when there are more than 9 problems with daily readings, these could either

be from missing readings or readings with a qflag. For example if a weather

station was missing daily records for June, July or August the highest annual

daily tmax was not calculated for that weather station for that year.

4.1.4 Precipitation

Monthly precipitation for Iowa is shown in Figure 4.6. There is seasonality

in precipitation with on average higher precipitation in June than the rest of

the year. Even after the data is screened for error �ags and missing data there

are a few precipitation values that seem exceptionally high in January and
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Table 4.3: Summary of Q Flags for Temperature Data

Flag Type Code Explanation

q not set did not fail any quality assurance check

q A checks for tmax that are below the tmin across a
three-day window

q D checks for duplication of the data across years or
months

q G a maximum tmin that is at least 10◦C warmer (or
cooler) than all other tmax/tmin for a given station
and calendar month

q I the tmin is greater than tmax

q K checks for streaks of 15 or more identical values

q M looks for daily tmax that are less than the lowest
tmin (and vice versa) by month for each station

q N both tmax and tmin are equal to 0◦C

q O checks that the daily tmax/tmin does not exceed the
15 day climatological mean by more than size stan-
dard deviations

q S the temperature di�ers by more than 10◦C from the
neighbouring stations on the preceding, current and
following days

q T checks that the daily tmax (or tmin) does not exceed
the tmax (or tmin) on the preceding and following
days by more than 25 ◦C

q X tmax (or tmin) that fall outside the world extremes
for the highest (or lowest) temperature ever seen
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Table 4.4: Flags from tmax observations in Iowa

�ag code number of points percentage

m blank 258,721 98.7 %

m L 3353 1.3 %

q blank 259,610 99.06 %

q G 5 0.02 %

q I 2401 0.92 %

q N 1 0.00 %

q S 57 0.02 %

s blank 7244 2.76 %

s 0 254657 97.17 %

s H 173 0.07 %

December. † The annual precipitation by year and weather station is shown

in Figure 4.7. A weather station that regularly records higher precipitation

than the other weather stations is 135976 (coded by *) in Henry county and

a weather station that often records lower precipitation is 132724 (coded by

.) in Emmet county. Figure 4.8 shows precipitation during the growing

season by month and year. The drought years 1976, 1988 and 2012 have

signi�cantly less precipitation than the other years. In July 1993 (marked as

light blue) a signi�cantly larger volume of rain fell than in the other years,

this caused wide spread wet rot to maize.

How precipitation varies across counties in Iowa is shown in Figure 4.9.

Counties with high precipitation are coloured dark orange and counties with

low precipitation are coloured dark blue. Higher precipitation is seen in

South East Iowa and lower precipitation in North West Iowa.

†Determining the origin of these high points is beyond the scope of the Thesis.
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Figure 4.6: Monthly precipitation in Iowa. Note that on average more of the
precipitation falls between May and August.

4.2 Causes of observational uncertainties

Some inaccuracies in the meteorological observations are caused by changes

in how the observations are measured, rather than changes in the weather.

A systematic bias in temperature readings is caused by a shift in the time of

day the observations were recorded [92]. From the 1940s individual weather

stations switched their time of observations from the afternoon to the morn-

ing without recording the date of this change, this caused a cooling bias in

the tmin and tmax time series as discussed in Section 1.3.

Other changes introduced additional inconsistencies into the archive. The

weather stations were gradually updated from a manually read liquid-in-

glass thermometer contained in a white wooden shelter to an electronically
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Figure 4.9: Map of the mean annual precipitation by county in Iowa. The counties
in the North West of Iowa have lower annual precipitation than the other counties.

read maximum-minimum temperature system (MMTS) [92]. The MMTS

introduced a negative bias to tmax and a positive bias to tmin. The exact date

a particular station switched to MMTS was not always recorded; the update

change was made piecemeal across the network of the weather stations from

the 1980s onwards. The physical location of the weather station may also

have been changed; for example it could have been moved from the roof of a

building to the ground, or moved to a di�erent location close by, again there

is often no record of this move.

Photographs of most of the weather stations in the USHCN network have

been taken by surfacestation.org [21]. Figures 4.10 and 4.11 show that some

of the weather stations are positioned in less than ideal locations where the

surroundings could impact on the meteorological observations. For example,

some weather stations are on top of concrete, which acts as a heat source,
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4.3. Interaction of meteorological observations and crop yield

Figure 4.10: Weather Station 135796 Mount Pleasant Observation Station, Henry,
Iowa * [21]. Meteorological observations will be hindered by the overgrown vegeta-
tion which blocks precipitation and sunlight.

or in shade during some of the day. When Menne et al [51] examined the

reliability of the data by comparing the mean monthly anomaly from 1971

to 2001 between poorly sited and well sited stations they found no evidence

that temperature trends were in�ated due to poor station siting .

4.3 Interaction of meteorological observations and

crop yield

The impact of weather on maize yield is considered in this section. If, during

the growing season, tmax rises above a certain threshold (29◦C) the maize

yield falls sharply [45]. As modelled in the crop model (see Section 1.5) if

this occurs during �owering the negative impact on yield is greater than at

other times during the crop cycle. Both high tmax and low precipitation have
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Chapter 4. Analysis of weather and yield

Figure 4.11: Weather Station 137147 Rock Rapids Observation Station, Lyon,
Iowa * [21]. Meteorological observations will be a�ected by the surroundings.

negative impacts on maize yield [30].

In this thesis the interaction between maize yield, the highest annual daily

tmax and precipitation using USHCN meteorological observations from Iowa

are examined. To consider the impact from just weather, the e�ects from

technical advancements in the maize yield time series need to be separated

out. For this section, a linear regression is �tted using linear least squares

to set the �xed parameters (α1 and α2) [35]. The �tted linear regression

is shown as the blue line in Figure 1.2. The residuals are then compared

against the weather variables, the residuals are calculated as

ri = yi − α1 + α2i, where i = 1, ..., 34 (4.1)
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4.3. Interaction of meteorological observations and crop yield

where the ith outcome is yi, ri is the i
th residual for year i = 1, ..., n.

The residuals were sorted by size and divided into three equally likely bins

labelled high, medium and low. High residuals are marked by red stars,

medium residuals by green circles and low residuals by blue squares. A

comparison of the highest annual daily tmax, the precipitation (over the

growing season) and the size of the residual is in Figure 4.12. The high

residuals (red stars) are mainly clustered towards the middle of the �gure,

so in general maize yield is higher when there is average weather. The low

residuals (blue squares) are separated out in two areas of the scatter plot;

the top left when there was higher than average precipitation and lower

than average maximum tmax and the bottom right when there was higher

than average maximum tmax and lower than average precipitation, drought

conditions.

What is the impact of high temperatures on yield? This is considered by

comparing the number of days in a year where tmax was greater than a

threshold temperature (29◦C) against the yield residuals. The results are

shown in Figure 4.13. There are low residuals without a high number of

tmax days, but never high residuals when there is a high number of tmax

days. A linear regression for the data is shown as the red dashed line. In

1993 extreme wet weather in July severely damaged crops. For no other year

did any such phenomenon occur. As only the impact of high temperatures

are considered, and given this is an extreme and identi�able cause, this point

has been omitted from the regression. The linear regression shows that as
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4.4. Maize yield by county in Iowa

the number of days above 29◦C increase, the residuals decrease as the yield

has been impacted by the high temperatures. The di�erence, measured as

yield residual, between the linear regression estimate and actual 1993 value

is 66.5.

In the next section maize yield by county in Iowa is examined.

4.4 Maize yield by county in Iowa

Iowa has 99 counties, this section examines the maize yield from these for

the time frame 1970 to 2011 [52]. A selection of six counties' maize yields

by year are shown in Figure 4.14, these show large discrepancies in yield

between counties. For example the yield for county 7 is lower and more

volatile than yield from the other �ve counties. Additionally, the increase in

yield over time is less in county 7. The mean yield by county is shown as

a histogram in Figure 4.15a, most counties have means towards the upper

end of the range which is from 100 to 140 bushels/acre. The location of

the mean yield by county is shown in Figure 4.16 where the higher mean

yields are orange, and the lower mean yields are blue. The southern counties

tend to have lower yields and the central northern counties tend to have

higher yields. The standard deviation of the yields by county is shown in

Figure 4.15b, most of the counties have an average standard deviation of

about 32. A few counties have a signi�cantly higher standard deviation (of

between 38 and 40) coloured orange in in Figure 4.17 and located in the North

West of Iowa. Over the years as the technology has improved, the yield has
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Figure 4.13: Comparison of the number of days over 29oC and the yield residual
for Iowa. Note the low residual yield for 1993 when the wet weather damaged crops.
A linear regression, red dashed line, was �tted to the data (excluding 1993) as the
number of days above 29oC increases the yield falls. See text for discussion of 1993.
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Figure 4.14: Yearly maize yield for six counties in Iowa. For most counties there
is a large rise in yield between 1970 and 2012.

increased. To calibrate the CERES-Maize model a linear regression is �tted

to the outcomes by the CERES-Maize modellers [19, 37] (see Section 1.5).

The slope parameters from �tting a linear regressions to county level maize

yield are shown in the histogram in Figure 4.15c. This histogram shows how

across the counties the slope level varies between 1.4 and 2.8. The highest

values of the slope parameter are for counties coloured orange in the North

West of Iowa and the lowest values are for the counties coloured blue in the

South of Iowa as shown in Figure 4.18.

4.4.1 How widespread is crop failure?

An investigation into how widespread crop failure is across counties in Iowa

is made by considering the largest fall in maize yield for each county between

1970 and 2012. The years with the biggest percentage fall in yield by county
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Figure 4.15: Histogram of maize yield in 4.15a shows for most counties yield
is towards the upper end of the range. The average standard deviation of maize
yield in 4.15b is approximately 32. The slope histogram 4.15c shows most slope
parameters are approximately 2.
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Figure 4.16: Mean yield by county in Iowa. Southern counties have lower mean
yields, coloured blue.

−97 −96 −95 −94 −93 −92 −91 −90
40

40.5

41

41.5

42

42.5

43

43.5

44
Mean std by county for Iowa

 

 

28.4

29.5

30.6

31.7

32.8

34.0

35.1

36.2

37.3

38.4

Figure 4.17: Mean standard deviation of maize yield by county in Iowa. The
counties in the South West of Iowa have the highest standard deviations coloured
orange.
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Figure 4.18: Technology slope by county in Iowa.The counties in the North West
have the higher slopes (orange) and the counties in the South have lower slopes
(blue).

are shown in Figure 4.19. The biggest falls all occur in one of only �ve years,

the years 1974, 1977, 1983, 1988 and 1993. An interesting point from this

�gure is that in the last 18 years there has not been a record breaking fall in

yield for any county in Iowa. The largest yearly fall in yield for any county

was a fall of 81.4% in 1977. The percentage fall in maize yield by county

was plotted separately for these �ve years. For these �gures, the larger the

percentage fall in yield, the darker the blue. A county was coloured white if

the yield remained constant or increased. Figure 4.20 shows 1974 when there

was a fall in yield across the whole of Iowa but particularly in the Western

counties. In 1977, as shown in Figure 4.21, yield fell in approximately half

of Iowa, this is the only year where the large fall in yield is so localised. For

1977 a couple of counties near the Southern edge were severely impacted,

as shown by the very dark blue. In 1983, Figure 4.22, the worst a�ected

188
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Figure 4.19: For each county in Iowa a blue dot marks the year with largest
percentage fall in yield. The years with the largest percentage falls are all found in
�ve years.

counties were in the South East of Iowa. In 1988, Figure 4.23, a larger area

of Iowa was severely a�ected with dark blue colours showing yield falls of

50% or greater across large swathes of West Iowa. However the largest and

most widespread falls in yield are in 1993, Figure 4.24, when nearly every

county is coloured in dark blue indicating a large fall in yield across the

whole of Iowa.

4.4.2 Maize yield in adverse weather years

The annual crop summary from the NASS lists the yield and growing con-

ditions by crop. Listed below are the di�erent adverse weather conditions

which were recorded as negatively impacting yield for maize in Iowa.
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Figure 4.20: Percentage fall in yield by county for Iowa in 1974. The darker the
blue, the larger the fall in yield here the largest falls are in the west of Iowa.
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Figure 4.21: Percentage fall in yield by county for Iowa in 1977. Although this
year had the largest fall in yield for any county it is more localised than the other
years.
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Figure 4.22: Percentage fall in yield by county for Iowa in 1983. The largest falls
in yield were for counties in the South East of Iowa.

−97 −96 −95 −94 −93 −92 −91 −90
40

40.5

41

41.5

42

42.5

43

43.5

44

 

 

−90 %

−81 %

−72 %

−63 %

−54 %

−45 %

−36 %

−27 %

−18 %

−9 %

no fall

Figure 4.23: Percentage fall in yield by county for Iowa in 1988. The largest falls
in yield were for counties in the East of Iowa.
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Figure 4.24: Percentage fall in yield b county for Iowa in 1993. All the counties
in Iowa have been signi�cantly impacted.

Year Summary of Extreme Events

1936 Dust bowl year

1945 "Serious obstacles" for maize - late planting due to cold

weather and �ooding, early/on time frosts

1947 Unfavourable weather, �ooding

1951 Smaller harvested area due to abandonment from �oods.

Crops late due to cool and wet weather and then got frost

damaged in September

1955 Drought in late July

1974 Hot dry weather in July caused heat stress

1977 High temperatures in a localised area in Iowa during June.

1983 Hot and dry weather conditions in July and August

1988 Drought in July
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4.4. Maize yield by county in Iowa

Year Summary of Extreme Events

1993 Excessive moisture in July damaged maize

1995 Hot weather in August, record yield the year before

2012 Widespread drought and extreme temperatures in June and

July

Adverse weather causes crop yield levels to fall. In the next section it is con-

sidered whether irrigation provides protection from adverse weather events.

4.4.3 Yield from irrigated �elds

In the US only four maize producing states have a large percentage of

their farm land irrigated, for these the NASS records the irrigated and non-

irrigated yields separately. The irrigated states are Colorado, Kansas, Ne-

braska and Texas. As Nebraska is the 3rd biggest producer of maize in

2012 [78], the data from Nebraska from 1947 onwards has been examined in

this section. In Figure 4.25, the irrigated harvested areas are shown in blue

and the non-irrigated harvested areas are shown in red. Between 1947 and

2012 Nebraska has changed from mainly non-irrigated to mainly irrigated.

The total harvested area is shown as the green line. The percentage of ir-

rigated and non-irrigated land is compared in Figure 4.25 which shows that

between 60 to 70% of the harvested area was irrigated between the 1980s
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Figure 4.25: Nebraska harvested area (acres) by year for irrigated (blue) and non
irrigated (red). The irrigated harvested area has increased from 1946. The green
line is the total area. Note the total area is wrong in the early years, this is an
error in the NASS �gures.

and the present day. In Figure 4.27 the yield weighted between irrigated and

non-irrigated yield is green, non-irrigated yield is red and irrigated yield is

blue. In the years 1974, 1980, 1993 and 2012 there are noticeable falls in

the weighted yield (green line). For the years 1974, 2002 and 2012 however

falls in yield only occur in non-irrigated maize yield (red) so for these years

irrigation does appear to provide some protection against adverse weather

conditions.

In the next section a method to estimate the technical advancements is pro-

posed which takes account of the non-linear increases in the maize yield time

series.
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Figure 4.26: Nebraska percentage of harvested area irrigated (blue) and non ir-
rigated (red). The percentage of irrigated area has slightly decreased in the last
twenty years.
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Figure 4.27: Weighted yield curve for Nebraska, total yield (green), irrigated yield
(blue), non-irrigated yield (red). Most of the yield increase is from the irrigated
lands.
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4.5 Introducing the prior return to model technol-

ogy advancement in maize yield

Technology increase in maize yield is said to have started with the introduc-

tion of fertilisers [40]. Is it possible to identify the year where the technology

increase �rst starts? γ is de�ned as the year where the technology increase

starts. One method to identify γ is to �nd the best �t using a �tted trend †.

Where the �tted trend is a straight line from 1860 until γ and then a linear

regression from γ to 2012. The best �t is found by computing the minimum

root mean square error between the �tted trend and the yield.

The root mean square errors for the �tted trend line by γ are compared in

Figure 4.28. The best �t is when γ is 1943, however the bottom of the curve

is quite �at so similar values of RMSE to 1943 are found for near by years.

yi =


38.18 if i ≤ γ,

38.18 + 1.92k where k = i− γ, k > 0

(4.2)

This best �tted trend is shown in Figure 4.29. There is a gap between the

�tted line and the observed yield at the �elbow�.

Is it possible to di�erentiate between increases caused by favourable growing

†thanks to Piotr Fryzlewicz for this suggestion.
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Figure 4.28: The root mean square error between the �tted trend line with the
�elbow� at each year and the observations by year for US maize yield time series.
Notice how the bottom of the curve is quite �at.

197



1860 1880 1900 1920 1940 1960 1980 2000 2020
0

20

40

60

80

100

120

140

160

180

200

year

y
ie

ld

 

 

yield
fitted line

Figure 4.29: Identifying the year (γ) when technical advances start. The RMSE
between the best �tted trend line and data is at a minimum when γ = 1943. Note
there is quite a large gap between the �elbow� of the �tted trend and the yield.
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maize yield

conditions from increases caused by technical advancements? A new method

to approximate the non-linear technical advancements using prior ratio is

proposed where the prior ratio is:

ri =
yi
zj
, j<i (4.3)

where yi is the outcome for the ith year, zj is the maximum prior yield,

max(y1, . . . , yi−1), for the years j = 1, ..., i− 1 and ri is the maximum prior

ratio for the ith year.

What does the prior ratio (ri) mean? A prior ratio (ri) greater than 1

means the yield has reached a new high. How much of this new high has

been caused by technical advancements and how much has been caused by

favourable weather conditions on top of pre-existing technical advancements,

however, is di�cult to determine. A prior ratio of less than 1 shows that the

maximum yield has not been exceeded. A prior ratio signi�cantly below 1

shows that there were adverse crop growing conditions, such as a drought,

in that year. Prior ratios are examined at state level and county level for

Iowa below.

4.5.1 State level

For Iowa the maize yield time series (green) and the maximum prior yield

(red) are illustrated in Figure 4.30a. The year where technical advancements
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Figure 4.30: Figure 4.30a: Comparison of the state yield (green line) with the
maximum prior yield (red line) for Iowa. The blue line marks γ the start of the
trend. Notice there is a steep rise in yield between 1961 and 1973. Figure 4.30b: A
step function of the years where the prior yield (ri) was greater than one for all the
states in Iowa. Note that between 1961 and 1972 nearly every year had an increase
in yield, which is unlikely to be caused just by favourable growing conditions.
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maize yield

is estimated to begin is the vertical blue line. The maximum prior year (red

line), shows two time periods where there were signi�cant increases in yield.

The �rst of these was between 1961 and 1973 when yield increased from 66

bushels per acre to 116 bushels per acre, an increase of 50 bushels per acre

over 12 years, in fairly regular increments. The second large change in yield

was between 2002 and 2005 when yield increased from 152 to 181 bushels per

acre. From 2005 the maximum prior yield has hardly moved from 181 bushels

per acre implying there have been no signi�cant technical advancements in

the last 8 years.

The step function increased by one each year the prior ratio (ri) was greater

than one, as shown in Figure 4.30b in green. The start of the trend, γ,

is the vertical blue line. This �gure shows slightly di�erent information

from Figure 4.30a as the green line increases uniformly every year the prior

ratio (ri) is greater than one, there is no indication about the size of the

prior ratio increase. From the Figure 4.30b the two steepest sections of the

step function are between 1937 and 1942, and between 1961 and 1972. The

stagnation from 2005 onwards is not so obvious as a small increase in the

maximum prior yield from 181 to 182 bushels per acres in 2010 makes the

step function increase.

4.5.2 County Level

At county level yield is not available before 1926, so the time series is shorter.
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Figure 4.31: Histogram for prior ratios greater than 1 for counties in Iowa by 4.31a
early years and 4.31b later years. Notice how the later years have more prior ratios
greater than 1 than the early years indicating that there was more technological
advancements in the later years.
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Figure 4.32: Iowa percentage of years where the ratio is greater than 1 (blue) and
less than 1 (red) for the early years (left) and the later years (right). Note that
there are signi�cantly more ratios greater than 1 after 1943.
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In Figure 4.33 the maize yield by individual county (green dot) is plotted

with the state level maximum prior yield (red line). The county level time

series contains signi�cantly more variability than the state level time series.

The prior ratio (ri) from Equation 4.3 is considered for each county and

for each year in Figure 4.34. There are a few years where all the ratios are

less than one, such as 1936 (the dust bowl year), 1946, 1974, 1983, 1993

and 2012. These are all years with well known and widespread adverse

weather conditions. Of more interest are the years where the majority of the

individual county prior ratios are greater than one; there are only a few of

these years: 1972, 1992 and 1994. It would be interesting to determine if

these years had particularly good growing weather or if these years saw the

introduction of signi�cant improvements in technology†.

The distribution of prior ratios greater than one is shown in Figure 4.35: the

distribution before 1943 has a similar shape to after 1943. The percentage of

both groups that have prior ratios greater than one are shown in Figure 4.36;

note there is little di�erence in the fraction pre-1943 (27%) and post-1943

(28%). This is unexpected as a prior ratio greater than one is either from an

improvement in technology or good weather that has boosted the yield for

that year and the number of prior ratios greater than one would have been

expected to be signi�cantly larger in post-1943 group. The γ year estimated

from the shorter county level time series is 1947. The fraction of prior ratios

†This is beyond the scope of this thesis.
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Figure 4.33: Comparison of the state level maximum prior yield (red line), the
state level yield (green line) and the county level yield (green dots). There is
signi�cantly more variability in county level time series than the state level time
series.
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Figure 4.34: Prior ratios for all the counties in Iowa by year. The prior ratios less
than one have a bigger downward movement than the ratios greater than one have
upward movement.
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Figure 4.35: Histogram of the prior ratios greater than one for all the counties in
Iowa. Notice how most prior ratios are just greater than one.

greater than one in the pre-1947 and post-1947 remained almost identical to

Figure 4.36. Dividing the time series by prior ratios greater than one has

not been a successful method in separating years with technology increases

from years with good weather after technology increases.

4.6 Conclusions

1. Comparisons of the variability of meteorological observations across

di�erent counties in Iowa is presented graphically in Section 4.1.2 and

4.1.4.

2. An examination of how the highest annual daily tmax and precipitation

impact maize yield is in Section 4.3. E�ects of technical advancements

were removed from the maize yield time series by subtracting the lin-

ear regression and considering just the residuals. The residuals were

divided by size into three equally likely bins. Comparisons of tmax, pre-
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Figure 4.36: Percentage of years where the prior ratio is greater than one (blue)
and less than one (red) for all the counties in Iowa. Notice how this is almost
identical for years both sides of the technology increase year.
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Figure 4.37: These plots each show two things for the years 2012, 1987, 1962 and
1937 (1) What percentage of the total harvested area each county is to the state of
Iowa which is recorded on the right y-axis in blue. (2) The cumulative of harvested
area percentage by county is recorded on the left y-axis in grey. Across all the years
the amount harvested in each county is fairly consistent
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Chapter 4. Analysis of weather and yield

cipitation and the bin size are made in Figure 4.12, which shows both

high tmax with low precipitation and low tmax with high precipitation

negatively impact the yield.

3. The variation of maize yield mean and standard deviation is presented

graphically across counties in Iowa in Section 4.4.

4. A study of how technology advancements di�er between counties in

Iowa by comparing the linear regression slope parameter is in Section

4.4.

5. A comparison of county level patterns of crop failure by considering

the largest percentage falls in maize yield in each county is in Section

4.4.1.

6. The prior ratio method is a novel simple statistic used here to detect

technical advancements and is discussed in Section 4.5.
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Chapter 5

Creating initial conditions for

gridded weather

The CERES-Maize model uses one approximation of weather across the

maize growing area to estimate yield [19, 37] as discussed in Section 1.4.

This weather approximation contains uncertainty, explained in Section 1.6,

which impacts the crop model's estimate [77, 95]. To see the impact from

this observational uncertainty on the yield estimate, an ensemble of initial

conditions can be input into the crop model. The use of ensembles to cre-

ate a probabilistic forecast is demonstrated for chaotic dynamical systems

in Chapter 2. In this chapter an ensemble is made which captures sampling

uncertainty from one weather approximation. This ensemble is designed

to be read directly by the CERES-Maize model run by Dr Joshua Elliott,

University of Chicago, who will use this in future work to better under-

stand the uncertainty in the crop model estimates. The ensemble of crop
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Chapter 5. Creating initial conditions for gridded weather

7 6 5

8 0 4

1 2 3

Figure 5.1: One grid and the lay out of the cells surrounding cell number 0

yield estimates will be converted into a probabilistic forecast using standard

kernel dressing [5]. The skill of this ensemble forecast can then be compared

against the skill of a one member ensemble forecast.

The gridded data analysed is from Iowa and contains twenty years of daily

data from 1st January 1980 to 31st December 2010 [20, 33, 53]. The obser-

vational uncertainty in this data is estimated by considering di�erences in

meteorological data between individual cells. One grid contains nine cells in

a 3 by 3 pattern. The centre is de�ned as cell 0 and the border as cells 1 to

8, as shown in Figure 5.1:

5.1 Uncertainty in gridded minimum temperature

For one grid in the centre of Iowa the di�erences in minimum temperature

(tmin) between cell 0 and the border cells are calculated. The results are

shown in Figure 5.2 as histograms. Cell 3 (Figure 5.2c) has mostly positive

di�erences, so tmin, is slightly warmer in cell 3 than cell 0. In cell 7 (Figure
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Table 5.1: Mean di�erences in tmin from border cells and cell 0 for one grid in
Iowa.

grid mean di� (K) mean std

1 0.21 0.72

2 0.36 0.57

3 0.74 0.74

4 -0.52 0.68

5 0.37 0.47

6 -0.59 0.81

7 -0.10 0.37

8 0.26 0.57

5.2g) most of the di�erences lie close to zero with little spread, so tmin

is very similar to the central cell. The mean and standard deviation of

these di�erences are in Table 5.1. Cell 3 with the highest mean of 0.74 is

the cell that least resembles cell 0. Cell 7 with a mean di�erence of -0.10

most resembles cell 0. A chi squared test on di�erences from the eight cells

show that none have a Gaussian distribution, however for simplicity when

estimating tmin later it is assumed they all have a Gaussian distribution.

To estimate the uncertainty in tmin gridded data for Iowa, the data is divided

into 16 equally sized areas, all squares. In each area the di�erences between

cell 0 and the border cells are calculated. As there is seasonality in tmin the

data is further divided up by month before a Gaussian distribution is �tted.

Histograms of the 16 monthly Gaussian parameters for tmin by month are

shown in Figures 5.3 and 5.4. The monthly µ parameters are all centred

around 0. The monthly σ parameters appear fairly �at between 0.5 and 2.5.

To create an ensemble of initial conditions Ne, where Ne is 9, random pertur-

bations are added to the initial condition, tmin at cell 0. The perturbations
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Figure 5.2: Di�erences in gridded tmin between border cells and cell 0 for one grid
in the centre of Iowa. The expected di�erence is zero.
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Figure 5.3: µ for Iowa gridded tmin by month for each of the 16 areas. The µ are
mainly clustered around 0.
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Figure 5.4: σ for Iowa gridded tmin by month for each of the 16 areas. The
monthly σ is spread out fairly evenly across all the months.
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5.2. Uncertainty in gridded maximum temperature

are drawn from an assumed Gaussian distribution, with µ and σ parameters

determined uniquely for each month and area, see Equation 5.1.

xji = gi + ζji (5.1)

where tmin value for the ith cell point is de�ned as gi, the i
th cell point

perturbations are ζji for j = 1, ..., Ne and Ne is the number of ensemble

members, 9. Here ζji is randomly drawn from the Gaussian distribution

N(µu,v, σu,v), where u is the month u = 1, ..., 12 and v is the area for v =

1, ..., 16.

A comparison between gridded tmin and the 9 member ensemble is in Figure

5.5, this is from twenty years of daily gridded data. The smallest di�erences

are in September and October where the histogram is at its narrowest and

the largest di�erences are in January and December.

5.2 Uncertainty in gridded maximum temperature

Gaussian parameters used to estimate the uncertainty in gridded tmax are

calculated in the same way as the gridded tmin uncertainty. Histograms of

the sixteen Gaussian parameters by month are in the Appendix E in Figures

E.1a and E.1b. For each area and for each month the value of the µ is

consistently close to zero. The value of σ is spread between a minimum of 0.5

and a maximum of 2.5 for all the months. When the Gaussian parameters

from estimating uncertainty in gridded tmin and tmax are compared they

appear very similar as all the means are approximately zero and the σ are
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Figure 5.5: Di�erence between the ensemble and tmin gridded data for the �rst
six months (5.5a) and the last six months (5.5b). The di�erences centre around 0.
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5.3. Uncertainty in gridded precipitation

evenly spread.

5.3 Uncertainty in gridded precipitation

Creating a realistic ensemble for gridded precipitation is not as straight-

forward as for temperature. With precipitation there are dry days or wet

days. Precipitation for wet days is normally approximated by a stochastic

weather generator using either a two parameter gamma distribution or a

semi-empirical distribution [69,76,99,100]. To generate a gridded precipita-

tion ensemble it is not the precipitation that needs to be estimated, but the

uncertainty in the gridded precipitation. This uncertainty is estimated by

drawing ensemble members using the distribution from the border cells.

In this thesis uncertainty estimates are calculated separately for the precip-

itation state of cell 0. The precipitation states are either 0 if it is a dry day,

or 1 if it is a wet day. Gridded precipitation data for Iowa are divided into

four equally sized areas by month and precipitation state. To estimate an

ensemble member for precipitation the following is needed.

1. The probability of a wet day and the probability of a dry day for the

border cells of cell 0

2. Precipitation from border cells sorted by volume into nine equally likely

bins

3. For the bin containing the highest volumes of precipitation, parameters

from �tting an exponential distribution
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Chapter 5. Creating initial conditions for gridded weather

The �ow chart in Figure 5.6 shows the steps for selecting a precipitation

ensemble member when cell 0 is a dry day.

5.3.1 Estimating the probability for a dry or wet day

To estimate probabilities for a particular area v, month u consider the case

where cell 0 is dry. Figure 5.7a shows the probability that the border cells

are dry given that cell 0 is dry, the probability is high ranging from 87%

to 95%. If cell 0 is dry, it is less likely that the border cells will be wet,

with probability ranging from 8% to 14% in Figure 5.7b. The probabilities

display seasonality, for example in areas 3 (red) and 4 (light blue) between

June and August the probability of being dry is lower than the rest of the

year. When cell 0 is wet a di�erent set of probabilities is calculated.

The ensemble member is chosen by randomly drawing 0 or 1 from the cal-

culated probabilities. Drawing a 0 means the ensemble member becomes 0,

and drawing a 1 means the precipitation amount needed to be estimated.

Which set of probabilities to use is determined by the state of cell 0.

5.3.2 Estimating nine equally likely bins

The gridded data is divided into two sets; one set when cell 0 is dry and

another set when cell 0 is wet. Any precipitation from the border cells is

collected and divided into nine equally likely bins where each bin has equal

counts of precipitation.

The boundaries of the nine equally likely bins are shown in Figure 5.8a for

precipitation bins 1 to 8 with the much wider 9th bin shown separately in
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Figure 5.6: Setting precipitation for an ensemble member when cell 0 is dry. Either
0 or 1 is randomly drawn with probabilities conditional on cell 0 being dry. If 0
is selected the ensemble member has no precipitation. If 1 is selected precipitation
needs to be calculated for the ensemble member. Historical precipitation is divided
into 9 equally likely bins and a number between 1 and 9 is drawn. If the number
is less than 9, precipitation is drawn from within that bin number. If the number
is 9 precipitation is randomly drawn from the exponential distribution. If cell 0 is
wet di�erent probabilities need to be calculated.
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Figure 5.7: The probability of a) a dry day and b) a wet day, given that cell 0 is
dry, by area and month. Note the probability for a) and b) are on di�erent scales.
The probability of a dry day, given that cell 0 is dry, is high across all the months
and areas.
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5.3. Uncertainty in gridded precipitation

Figure 5.8c. When cell 0 is dry not much precipitation falls in the border

bins, so all eight bins are approximately zero across all areas. This is not

the case for the 9th bin, which is much wider with a bigger range of daily

volumes. The precipitation bins, from the set when cell 0 is wet, are much

wider as seen in Figure 5.8b. Area 3 shows seasonality in the precipitation

volumes with the largest volumes of daily precipitation occurring between

June and September. Area 4 has more daily precipitation than the other

areas.

A precipitation value for each ensemble member is chosen by randomly draw-

ing a number between 1 and 9, each number has an equally likely chance of

being selected. The number drawn determines the bin the precipitation is

taken from. The randomly selected bin is divided into 20 subsections and

a number between 1 and 20 (with equal probability of being selected) is

drawn. The precipitation for the ensemble member is set as the value in the

middle of the selected subsection.† If the number drawn is 9, however, the

precipitation is a random draw from the exponential distribution.

5.3.3 Estimating the exponential distribution

Data in the 9th precipitation bin, when cell 0 is wet or dry, is used to sepa-

rately �t the exponential distribution. Figure 5.9a shows precipitation obser-

vations from bin 9 when cell 0 is wet (for area 1, for the month of January).

The majority of the precipitation observations are in the left hand edge of

bin 9 with very few data points on the right hand side of the bin. If bin 9

†An exception to this is if one of the subsection contains only identical numbers, in
this case the precipitation is set to be this number.
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(a) Equal bins when cell 0 is dry

0 5 10
0

5

10

15

20

Section 1

month

B
o
x
 E

d
g
e
 (

m
m

/d
a
y
)

0 5 10
0

5

10

15

20

Section 2

month

B
o
x
 E

d
g
e
 (

m
m

/d
a
y
)

0 5 10
0

5

10

15

20

Section 3

month

B
o
x
 E

d
g
e
 (

m
m

/d
a
y
)

0 5 10
0

5

10

15

20

Section 4

month

B
o
x
 E

d
g
e
 (

m
m

/d
a
y
)

(b) Equal bins when cell 0 is wet
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(c) 9th bin when cell 0 is 0
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(d) 9th bin when cell 0 is wet

Figure 5.8: Equally likely bins for when cell 0 is dry (left) and when cell 0 is wet
(right). Figures are (a) and (b) location of the edges of the �rst 8 bins and (c)
and (d) the width of the last bin. Note that the box edge axis in (a) and (b) is
di�erent. When cell 0 is dry the �rst eight bins are very small as there is less rain
in the surrounding cells.
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5.3. Uncertainty in gridded precipitation

is divided into 20 equally spaced subsections to match the other 8 bins, the

random precipitation selected would be equally spaced across the entire box

so too many large values would be selected and too few small values. Instead,

an exponential distribution is �tted to all the precipitation observations that

fell into bin 9 (by area and month). The exponential distribution is truncated

at the edge of box 8. Figure 5.9 compares the observations with randomly

drawn numbers from the exponential distribution for area 1 in January. The

exponential distribution tends to overestimate the precipitation as there are

fewer lower precipitation values than in the observations.

The value assigned to the ensemble member when a 9 is drawn is selected

by randomly drawing from the exponential distribution. The ensemble of

initial conditions are compared with the gridded precipitation, the di�erences

are shown in Figures 5.10 and E.3. The di�erences are centred around 0,

although a few of the ensemble members di�er by as much as 40 mm/day

from the original cell 0.

Future work will use these ensembles of gridded data in the CERES-Maize

model. It will be interesting to measure the uncertainty in the ensemble

forecast and also to compare the skill between a nine member ensemble

forecast and the current singleton ensemble forecast. Once the results from

this have been considered it would be interesting to apply this to more areas

than just Iowa.

223



0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

Precipitation (mm/day)

(a) Precipitation Observations

0 50 100 150 200 250 300
0

500

1000

1500

2000

2500

Precipitation (mm/day)

(b) Precipitation ensemble members

Figure 5.9: Comparisons of observations in bin 9 for area 1 in January (5.9a) with
randomly drawn numbers from the exponential distribution (5.9b). The lowest
precipitation values randomly drawn from the truncated exponential distribution
are less than the observations.
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domly drawn precipitation by month. The di�erences are all centred around 0.
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Chapter 5. Creating initial conditions for gridded weather

5.4 Conclusions

1. A methodology to make an ensemble of gridded data for tmin and tmax

for use by the CERES-Maize model is explained in Sections 5.1 and 5.2.

The ensemble members are selected to re�ect the sampling uncertainty

in the gridded data by considering di�erences between cell 0 and the

border cells. Perturbations are added to the initial gridded data using

a Gaussian distribution.

2. A methodology to make an ensemble of gridded precipitation is dis-

cussed in Section 5.3. The method for adding ensemble members is

explained in the �ow chart from Figure 5.6.
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Chapter 6

Summary

In this thesis we consider both the strengths and the main causes of errors

in seasonal weather forecasting and crop modelling. A contribution from

this thesis in Chapter 2 is the exploration of the e�ect model imperfection

has on probabilistic forecasts for a dynamical system. Multi-model ensemble

forecasts are made using a simple chaotic system as a proxy for seasonal

weather. The simple one dimensional chaotic system modelled is the Moran

Ricker Map. In this idealised world using models of the Moran Ricker Map,

the only uncertainty is from model inadequacy as the observations are noise

free. With three models of the system original experiments are set up to

explore the limitations of small forecast-outcome archives. In Section 2.3 we

demonstrate that small forecast-outcome archives, the size of DEMETER,

can often overestimate the skill of the models. We also demonstrate why

bootstrap resampling is a better way to estimate con�dence intervals for
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Chapter 6. Summary

small samples. Additionally in Figure 2.10 we show that the order of skill

for the models is consistent across di�erent size archives.

Equally weighting forecasts from di�erent seasonal weather models has been

shown to improve the skill [26]. In Section 2.5 we demonstrate that this was

not the case in our example with a large archive from the idealised world.

Instead the forecast with the most skill in Table 2.8 uses two out of the three

models. The multi-model ensemble forecast using all three models was in

4th place, behind single models.

We then explore new methods to improve the skill of a multi-model fore-

cast by using climatology. One method which improves the skill is to in-

clude climatology as a separate model in an multi-model forecast, shown in

Figure 2.15. Another method is blending individual model's forecasts with

climatology, a technique known to improve the skill of seasonal weather fore-

casts [85]. To blend with climatology, the blending parameter is set in pro-

portion to the skill of the model. In Section 2.6 we demonstrate for the �rst

time in Table 2.10 that blending our three models of the Moran Ricker Map

with climatology also improves their individual skill. In a further step these

blended models are then equally weighted together which, in our example,

provides forecasts with the most skill in Figure 2.16, an original contribu-

tion from this thesis. Further work beyond the scope of this thesis would be

to weight the multi-model forecasts according to the skill of each individual

model, as well as examining the skill of each model by lead time and location

on the attractor [34].
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In Chapter 3 crop modelling with the physical simulation model CERES-Maize

[19,37] is examined using US maize yield. A probabilistic forecast is created

from a singleton ensemble from the crop model by standard kernel dressing

with Gaussian kernels in Section 3.1, this is a new contribution from this the-

sis. Also new in Section 3.2 is measuring the skill of the CERES-Maize model

against a bench mark model. In crop modelling the bench mark model used

is not climatology, which is not a strong enough test, but instead persis-

tence. A multi-model forecast for crops is generated by creating empirical

crop models based on US maize yield. The empirical crop models are the

dynamic climatology model [85], not a new contribution, the ratio model, the

asymmetric model and the gamma model which are new contributions, these

are explained in Section 3.4. The asymmetric model uses a mixed Gaussian

kernel to dress the estimates. The gamma model uses an asymmetric gamma

kernel in kernel dressing. As far as we are aware using an asymmetric kernel

for crop modelling is new. The skill of crop model forecasts, shown in Figure

3.19, improve if their kernel widths are set by minimising Ignorance, this is

another contribution.

The crop model with the most skill for US maize yield forecasts, relative to

persistence, is the CERES-Maize. By design empirical models are unable

to predict large falls in yield from adverse weather events so they have less

skill in these years than the physical simulation model CERES-Maize. The

ratio model is the empirical model with the most skill. To examine if equally

weighting crop models improves the skill [26], two crop models are equally

weighted together. The CERES-Maize with the asymmetric model and the
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Chapter 6. Summary

CERES-Maize model with the ratio model both have more skill than the

CERES-Maize model as shown in Figure 3.23. This is a surprising result as

the asymmetric model has the least skill of all the crop models relative to

persistence.

These experiments are repeated at state level for the top 8 maize producing

states. The skill of the CERES-Maize relative to persistence at state level

varied between states. It ranges between -1.13 for Illinois to -0.09 for South

Dakota, where there is little skill above persistence. For each state the model

or multi-model with the most skill relative to persistence is found. For Illinois

it is the CERES-Maize model and for South Dakota it is the ratio model. For

all but one of the remaining states it is from equally weighting CERES-Maize

and ratio model, the exception is Iowa where it is from equally weighting

CERES-Maize and asymmetric model. This demonstrates there is a role for

simple empirical models to improve the skill of the CERES-Maize model.

The meteorological observations and maize yield are examined at county

level for the state of Iowa, although the data itself is nothing new the pre-

sentation of it is. Also new is the consideration of the size of Iowa yield

compared against the highest annual tmax and precipitation in Figure 4.12,

which illustrates that it is not just drought conditions that cause lower than

average maize yield. By comparing the residual yield against the number of

days greater than 29◦C it is seems there is a negative impact on yield, also a

new contribution. How to identify the date that the technical advancements

start and how to strip the technical advancements from the yield time series
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are also considered.

The CERES-Maize model uses one approximation of gridded weather to pre-

dict yield. How much the uncertainty in this gridded data impacts the yield

forecasts is unknown. In Chapter 5 a methodology for creating an ensemble

of initial conditions for the gridded data is proposed, a new contribution

from this thesis. Gridded tmax and tmin ensembles are added by randomly

drawing from a Gaussian distribution. Precipitation for ensemble members

is conditional on whether or not there is precipitation in the gridded obser-

vation, the method is outlined in the �owchart in Figure 5.6. Once these

gridded initial conditions are input into the CERES-Maize model it would

be very interesting to compare the skill of a singleton ensemble from the

CERES-Maize model with the skill from a 9 member ensemble. Unfortu-

nately the runs from the CERES-Maize model have not yet been completed.
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Appendix A

Gridded Meteorological data

sets

Further details about the gridded meteorological observations used by the

CERES-Maize model are discussed here.

A.1 Gridded Precipitation

The gridded precipitation data set is from Climate Prediction Centre (CPC)

Uni�ed Rain Gauge Database [33]. They estimate the gridded data set di-

rectly from the observations, as they have a large network of approximately

8,000 rain gauge meters covering the USA. The irregularly spaced precip-

itation observations are converted into a regularly spaced grid by a data

interpolation scheme based on Cressman [33]. This interpolation allocates

weights to the observation dependent on how close it is to a grid point.
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A.2. Gridded Temperature

A.2 Gridded Temperature

Gridded tmin and tmax are provided from reanalysis data by The National

Centres of Environmental Prediction (NCEP) North American Reanalysis

(NARR) [53]. The NCEP NARR data set provides the best estimate of

the North American weather state, this is a high resolution sub set of the

global NCEP reanalysis [39]. To create this multiple historical meteorological

observations are collected, checked for errors and then compared against

the physics from the medium-range forecast model in operation in April

2003 [74]. The NARR supplies data on a 0.3 ◦ by 0.3 ◦ grid.

A.3 Gridded solar radiation

The solar radiation is from the Surface Radiation Budget (SRB) found in

Global Energy and Water Cycle Experiment (GWWEX) by NASA. The data

is available from 1998 to 2007 and is on a grid size of 1 ◦ by 1 ◦. The variable

used is downward shortwave radiation. To derive this variable an algorithm

is used with cloud parameters from the International Satellite Cloud and

reanalysis data from Global Modelling and Assimilation (GMAO) [84].
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Appendix B

Imperfect Models for the

Moran Ricker Map

Three imperfect models were designed to replicate the dynamical system. In

this Thesis the dynamical system was the Moran Ricker Map [56,70] with α

as 3:

xi+1 = x
α(1−xi)
i (B.1)

Iterations through this system produced values bounded between 0 and 2.46

(xmax), where xmax = e2

3 as shown in Figure B.1. There were two �xed points

at xi = 0 and xi = 1.
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B.1. Model MR12: Taylor series expansion of the Moran Ricker Map
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Figure B.1: The Moran Ricker Map when α is 3 is bounded between 0 and 2.46.

B.1 Model MR12: Taylor series expansion of the

Moran Ricker Map

One imperfect model to replicate the Moran Ricker Map was built using

Taylor's Series expansion for e3(1−xi). Substituting this into Equation B.1

gives :

xi+1 = xi

(
1 + 3(1− xi) +

1

2!
(3(1− xi))2 + · · ·+ 1

n!
(3(1− xi))n

)
(B.2)

Equation B.2 is expanded to the 4th power (MR4) and compared to the

Moran Ricker Map by setting x0 as evenly spaced values between 0 and 2.5

and then iterating these values once through the model. Figure B.2a shows

the values of x1 are not bounded between 0 and xmax. In particular when

x0 is greater than 2, x1 tends towards in�nity. For each iteration through
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Appendix B. Imperfect Models for the Moran Ricker Map

0 0.5 1 1.5 2
0

0.5

1

1.5

2

2.5

3

x0

x
1

(a) EMR4

4 6 8 10 12 14 16
−15

−10

−5

0

5

10

15

20

nth power

x
i+

1
(w

h
en

x
i
=

x
m
a
x
)

 

 

odd
even
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Figure B.2: Figure B.2a: MR4 tends to in�nity for large values of x0. Figure
B.2b: when the nth expansion is odd xi+1 is negative.

model MR4 more points would move towards in�nity.

For the values of xi+1 to lie between 0 and 2.46, to replicate the system, xi+1

when xi = xmax must be less than or equal to xmax. Figure B.2b shows the

di�erent values of xi+1 (when xi = xmax) for Equation B.2 expanded to the

nth power. When the nth power is even xi+1 is positive and when the nth

power is odd xi+1 is negative.

If xi+1 of xmax is negative any point iterated through the model will quickly

move towards minus in�nity. A Taylor Series expansion using an even power

provides the simplest model to approximate the Moran Ricker Map. The

cut o� point where xi+1 (for xi = xmax) is less than the xmax is shown in

Figure B.2b as model MR10. The values of xi+1 are 0.5 for MR10 and 0.1

for MR12.

Model MR10 and MR12 both iterate xmax onto a number below xmax, so

xi+1 will remain bounded for iterations through the system. Comparisons

between the system and models MR10 and MR12 at x1 are in Figure B.3.
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B.1. Model MR12: Taylor series expansion of the Moran Ricker Map
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(c) Perfect model and MR12.
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(d) Di�erences using MR12.

Figure B.3: Comparison between the Moran Ricker Map and the models MR10
and MR12. Model MR12 provides more accurate results than model MR10 for
higher values of x0.

The Figure shows model MR12 provides a more accurate estimate for higher

values of x0 than model MR10.

If the initial conditions (x0) lie between 0 and 2.675 for model MR10, and

between 0 and 2.925 for model MR12 xi+1 remains bounded. Outside these

values xi+1 quickly approaches in�nity. The ensemble of initial conditions

was selected so that they never fell outside these boundaries.
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Appendix B. Imperfect Models for the Moran Ricker Map

B.2 MRLM: Taylor series expansion of the log term

Another imperfect model of the system was created by taking the log of the

Moran Ricker Map, and then making a Taylor series expansion for this log

term:

log(xe3(1−x)) = log(x) + log(e3(1−x)) (B.3)

log(xe3(1−x)) = log(x) + 3− 3x (B.4)

log(xe3(1−x)) = log(x) + 3− 3(elog(x)) (B.5)

The Taylor expansion for the log of the Moran Ricker Map is

log(xi+1) = log(xi) + 3− 3

(
1 + log(xi) +

(log(xi))
2

2!
− (log(xi))

3

3!
+ ...

)
(B.6)

Equation B.6 is expanded to the 4th power to create MRLM4. For model

MRLM4 when xi = 0, xi+1 goes to in�nity whereas for the system xi = 0 is

a �xed point. To account for this in the log model when xi = 0, xi+1 was

set to 0 too. Figure B.4 shows the results of one iteration through model

MRLM4 using values of x0 evenly spaced between 0 and 2.5. This graph

clearly shows that the values of x1 have a similar range to the system as

they are bounded between 0 and a slightly lower maximum value of 2.40

however when x0 is close to 0, the values di�ers for x1 moving to 0.

If xi, a set of points evenly spaced between 0 and xmax, is iterated through
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B.2. MRLM: Taylor series expansion of the log term
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Figure B.4: MRLM4 at x1. Note this is close to the system except when x0 is
close to 0.

the system the only point in xi+1 that will ever reach 0 is the point in xi equal

to 0. For the model MRLM4 this is not the case, as shown in Figure B.4, if

xi is close to zero xi+1 will tend to zero especially as the number of iterations

increase. To see the e�ect this has at x10 sorted values from di�erent log

models and the system are compared in Figure B.5. For model MRLM4 a

large number of x10 are zero compared to the system. For MRLM6 there

are less x10 at zero but overall the x10 values are lower than the system.

For example in the Moran Ricker Map there are nearly 3000 points with

values less than 0.5 but for MRLM6 there are about 4000 points. For model

MRLM8 the x10 values are still lower but it is closer to the Moran Ricker

Map. The log model used in this Thesis is MRLM8.
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Figure B.5: Comparison of x10 values of Moran Ricker Map B.5a with log models
to the 4th, 6th and 8th power. MRLM4 has more points at 0 than the system and
MRLM8 has more points at the maximum value than the system.

B.3 Model MRFT: A Fourier transform approx of

the Moran Ricker Map

The third imperfect model to replicate the Moran Ricker Map was created

using the Fourier transform:

y =
a0√

2
+
∞∑
n=1

an cos

(
2πn

(x− a)

(b− a)

)
+ bn sin

(
2πn

(x− a)

(b− a)

)
(B.7)

240



B.3. Model MRFT: A Fourier transform approx of the Moran Ricker Map

As the Moran Ricker Map is bounded between 0 and 2.46 the constants can

be calculated by numerically integrating the equation between 0 and 2.46.

Equation B.7 becomes:

y =
2.8391

sqrt(2)
+ 0.7551 cos

(
1 ∗ 2π ∗ x

2.46

)
− 0.2872 cos

(
2 ∗ 2π ∗ x

2.46

)
−

0.3414 cos

(
3 ∗ 2π ∗ x

2.46

)
− 0.2642 cos

(
4 ∗ 2π ∗ x

2.46

)
−

0.1960 cos

(
5 ∗ 2π ∗ x

2.46

)
− 0.1476 cos

(
6 ∗ 2π ∗ x

2.46

)
−

0.1139 cos

(
7 ∗ 2π ∗ x

2.46

)
− 0.09 cos

(
8 ∗ 2π ∗ x

2.46

)
−

0.0727 cos

(
9 ∗ 2π ∗ x

2.46

)
− 0.0598 cos

(
10 ∗ 2π ∗ x

2.46

)
+

1.8147 sin

(
1 ∗ 2π ∗ x

2.46

)
+ 0.9809 sin

(
2 ∗ 2π ∗ x

2.46

)
+

0.4537 sin

(
3 ∗ 2π ∗ x

2.46

)
+ 0.2296 sin

(
4 ∗ 2π ∗ x

2.46

)
+

0.1285 sin

(
5 ∗ 2π ∗ x

2.46

)
+ 0.0781 sin

(
6 ∗ 2π ∗ x

2.46

)
+

0.0507 sin

(
7 ∗ 2π ∗ x

2.46

)
+ 0.0346 sin

(
8 ∗ 2π ∗ x

2.46

)
+

0.0246 sin

(
9 ∗ 2π ∗ x

2.46

)
+ 0.0180 sin

(
10 ∗ 2π ∗ x

2.46

)
(B.8)

Equation B.8 was expanded to the 4th term i.e. to the sine and cosine terms

for 4∗2π∗x
2.46 , creating model MRFT4. One iteration through the model using

x0 is shown in Figure B.6. The Figure is a notably di�erent shape from the

system especially at the minimum and maximum values of x1. In particular

the graph crosses the x1 axis at a number greater than 0, it dips down to
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Figure B.6: MRFT4 at one iteration. This di�ers signi�cantly from the system
when x0 is close to 0.

negative numbers between 2 and 2.5 and as x0 moves closer to the maximum

of 2.5 the values of x1 start to increase. A further di�erence between the

system and the Fourier Model as the model has no �xed points at x = 0 and

x = 1.

To see which expansion of the Fourier transform to use comparisons were

made at x1 between the system and the Fourier transforms to the 10th and

12th expansion in Figure B.7. Model MRFT12 is a better �t than model

MRFT10 for values close to 0. In this Thesis the Fourier transform model is

to the 12th term.
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Figure B.7: Comparison of the system and (a) MRFT10 and (b) MRFT12 at x1.
Notice how the di�erences close to x0 = 0 decrease for MRFT12.
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Appendix C

Figures for Crop Modelling

This appendix contains �gures for the persistence, dynamic climatology and

ratio models which are discussed in Chapter 3. Figures C.1, C.3 and C.5

show the forecast distributions from a kernel dressed ensemble for the years

1984, 1988 and 2006. The y-axis for Figure C.3 is on a di�erent scale to the

others as the forecast distribution is so �at. Figures C.2, C.4 and C.6 show

how smooth the kernel width by ignorance is for the years 1984, 1988, 1993

and 2006.
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Figure C.1: The forecast distribution produced from dressing estimate with a
Gaussian kernel of width σ. The forecast distribution from the persistence model
is shown as a blue line, the estimates are shown as green circles and the outcomes
are shown as red stars for selected years 1984, 1988 and 2006. Notice although the
outcome does not always lie in the high probability areas of the forecast distribution
for years 1984 and 1988 it is captured by the forecast distribution.
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Figure C.2: The robustness of forecast distribution is checked by comparing the
ignorance by kernel width for four selected years for the persistence model. In
2006 the outcome fell in a very high probability of the forecast distribution, so the
narrower the kernel the better.

246



2 3 4 5 6 7 8 9 10 11 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

yield

for
eca

st p
rob

 

 

pdf
ens
obs

(a) 1984

2 3 4 5 6 7 8 9 10 11 12
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

yield

for
eca

st p
rob

 

 

pdf
ens
obs

(b) 1988
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Figure C.3: The forecast distribution for dynamic climatology. The forecast dis-
tribution from the dynamic climatology model is shown as a blue line, the ensemble
of estimates are shown as green circles and the outcomes are shown as red stars
for the years 1984, 1988 and 2006. The ensemble of estimates is so wide that the
forecast distribution is very �at.
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Figure C.4: Examining the ignorance by kernel width for selected years for the
dynamic climatology model. The ignorance by kernel width for 1984, 1988 and
1993 have very similar shapes.
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Figure C.5: The forecast distribution produced from dressing the ensemble of
estimates. The forecast distribution from the ratio model is shown as a blue line,
the ensemble of estimates are shown as green circles and the outcomes are shown
as red stars for the years 1984, 1988 and 2006. Notice how the outcome does not
lie in the high probability area of the forecast distribution for 1984.
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Figure C.6: Examining the robustness of the kernel width by looking at the
ignorance by kernel width for four selected years for the persistence model. The
kernel width needs to be much wider for years 1988 and 1993
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Appendix D

Summary of state codes for

weather stations

State Code State Number State

01 AL Alabama

02 AZ Arizona

03 AR Arkansas

04 CA California

05 CO Colorado

06 CT Connecticut

07 DE Delaware

08 FL Florida

09 GA Georgia

10 ID Idaho

11 IL Idaho
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Appendix D. Summary of state codes for weather stations

State Code State Number State

12 IN Indiana

13 IA Iowa

14 KS Kansas

15 KY Kentucky

16 LA Louisiana

17 ME Maine

18 MD Maryland

19 MA Massachusetts

20 MI Michigan

21 MN Minnesota

22 MS Mississippi

23 MO Missouri

24 MT Montana

25 NE Nebraska

26 NV Nevada

27 NH New Hampshire

28 NJ New Jersey

29 NM New Mexico

30 NY New York

31 NC North Carolina

32 ND North Dakota

33 OH Ohio

34 OK Oklahoma
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State Code State Number State

35 OR Oregon

36 PA Pennsylvania

37 RI Rhode Island

38 SC South Carolina

39 SD South Dakota

40 TN Tennessee

41 TX Texas

42 UT Utah

43 VT Vermont

44 VA Virginia

45 WA Washington

46 WV West Virginia

47 WI Wisconsin

48 WY Wyoming

D.0.1 Minimum temperature observations

Monthly t̄min for Iowa is shown in Figure D.1. Like tmax, tmin displays

seasonality with on average higher temperatures between June and August

and lower temperatures in January and December. The cooler months of

January, February and December have the most variability. The monthly

t̄min for the individual month of July is shown in Figure D.3 by weather
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Appendix D. Summary of state codes for weather stations
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Figure D.1: Monthly t̄min in Iowa. Note that on average the higher temperatures
are between June and August.

station and year. The weather station which tends to have lower t̄min across

most of the years is again ◦ (weather station 132684 from Fayette).

The monthly anomalies for tmin and tmax for Iowa are shown in Figure

D.2. In this �gure, zero is the annual mean temperature calculated from the

overall tmax and tmin values. A green dot represents the anomaly between

t̄max and the annual mean temperature for a year and a weather station and

the red square is the monthly mean of these anomalies. A blue dot represents

the anomaly between t̄min and the annual mean temperature. In the cooler

months the anomalies from t̄max (green dots) and t̄min (blue dots) sometimes

have similar values. This is not the case in the warmer months when t̄max

and t̄min anomalies do not overlap.
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D.1. Flags for Meteorological Observations
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Figure D.2: Monthly anomalies for tmin (blue) and tmax (green) in Iowa.

D.0.2 Snowfall observations

Typically snow in Iowa falls between October and April, with the majority

of snow falling in January and December. If snow falls in April or May it

can delay the planting of maize. Looking at snowfall by month in Figure

D.4 it can be seen there was signi�cant snowfall in April (light blue) for the

years 1973, 1982, 1983 and 1997.

D.1 Flags for Meteorological Observations

Further error �ags contained in the USHCN database:
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Figure D.4: Monthly snow in Iowa by year. On average more snow falls in the
months of December and January.
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Figure D.5: Annual snowfall by year and month in Iowa. There is quite a lot of
snow in April (light blue) for the years 1973, 1982, 1983 and 1997.
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Table D.2: Summary of M Flags for Temperature Data

Flag Type Code Explanation

m blank no measurement information applicable

m L temperature appears to be lagged with respect
to reported hour of observation

Table D.3: Summary of S Flags for Temperature Data

Flag Type Code Explanation

s blank no source (missing data)

s 0 data source U.S. Cooperative Summary of the
Day (NCDC DSI-3200)

s H data source High Plains Regional Climate Cen-
ter real-time data
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Appendix E

Figures for creating initial

conditions for gridded weather

This appendix contains �gures for tmax and precipitation. Figures E.1 and

E.2 show estimated monthly µ and σ for the Gaussian distribution that

the tmax ensemble members are drawn from. The distributions are very

similar to the tmin distributions. Figure E.3 compares the precipitation

ensemble members against the gridded precipitation for the months of July

to December. Most of the di�erences are close to 0.
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Figure E.1: µ parameters for tmax by month for each of the 16 sections. The
di�erences are all centred around 0.
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Figure E.2: σ parameters for tmax by month for each of the 16 sections. Notice
how the parameters between tmax and tmin are similar.
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Figure E.3: Comparison of gridded precipitation and a 9 member ensemble for
gridded precipitation from July to December.
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Glossary

CERES-Maize a large scale physical simulation model to estimate maize

yield [37], [19]. 8, 33, 34, 40�45, 61, 107�109, 111, 112, 117, 118, 120,

125, 128, 129, 146, 148, 150�152, 156, 158�161, 164, 185, 209, 223, 226,

229�232

DEMETER multi-model ensemble seasonal forecasts using seven di�erent

European models evaluated over the same historical period [60]. 94

Ignorance (IGN) skill score (− log2(p)) which measures the skill of a prob-

abilistic forecast, the lower the ignorance the more skill a model has

[25], [72]. 34, 56, 58, 77, 84, 85, 94, 99, 107, 108, 112, 116�118, 125,

128, 129, 134, 144, 146, 148, 156, 158, 161, 229

USHCN United States Historical Climatology Network manage a network

of meteorological weather stations throughout the US [52]. 38, 39, 41,

163, 165, 171, 172, 178, 180

attractor a set of points towards which xi integrate forward to over time.

52, 71
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Glossary

bench mark model a simple model that other models are measured against,

with the expectation that this model will be beaten. 56, 57, 61, 64, 77,

107, 116, 117, 120, 150, 160, 229

blending when the imperfect model is weighted with the climatological dis-

tribution using α which can be between 0 and 1 [82]. 61, 98�100, 102

climatology distribution calculated by kernel dressing a large data set of

outcomes. 33, 57, 61, 64, 65, 77, 79, 81�84, 94�96, 98�101, 105�107,

116�118, 120, 228, 229

dissipative a dynamical system where, on average, line segments shrink.

52

forecast bust where the outcome is vanishingly small probability mass as

the outcome fell in an area of low probability in the forecast distribu-

tion. 95, 98, 112

forecast distribution from kernel dressing an ensemble of estimates, where

in certain cases the ensemble could be a singleton ensemble [4]. 104,

125

forecast-outcome archive data set used to examine the accuracy of the

models. Contains a series of ensemble of estimates (from the models)

and outcomes. To create a forecast distribution the ensemble is kernel

dressed with Gaussian kernels [4]. In DEMETER the ensemble con-

tains nine ensemble members [60].. 33, 35, 57, 59, 61, 65, 77, 79, 80,

82�84, 86, 94, 105, 227
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Glossary

imperfect model a model which is an imperfect structural approximation

of the system it is representing. 64, 234, 235, 238, 240

kernel dressing parameters the parameters are the width (σ) and o�set

(u) of the kernel used for kernel dressing. In this thesis the parame-

ters are usually set by minimising ignorance [18]. The exception is in

Sections 3.1 to 3.4.. 54, 56, 58, 80�84, 86, 99, 105, 134, 144

kernel dressing a method of converting an ensemble of estimates into a

forecast distribution by, in this Thesis, putting a Gaussian kernel on

each estimate [5]. 52, 54, 57, 61, 80, 107, 108, 111, 112, 116, 117, 123,

129, 131, 137, 210, 229

leave-one-out cross-validation a method where the forecast-outcome data

is divided into two groups by leaving one point out. The kernel dress-

ing parameters are estimated using the large group of forecast-outcome

points and skill of the forecast is measured using the omitted forecast-

outcome point. This is then repeated so that there is a set of kernel

dressing parameters, the parameters are the median [82].. 57, 81, 84,

108, 111, 117, 120, 129, 131, 144, 146

meteorological observations there are many meteorological observations,

in this thesis we mainly consider tmin, tmax and precipitation from the

USHCN [52]. 33, 34, 37�41, 45, 60, 163, 165, 171, 172, 175, 178, 180,

206, 230, 232

model inadequacy errors in the model's forecast caused by the model not

capturing the system which generated the outcomes. 34, 58, 65, 80,
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Glossary

94, 227

multi-model forecast where the forecast is from more than one model.

95, 96, 98, 100

observational uncertainty imprecision caused by imperfections in the ob-

servations. 34, 37, 39, 58, 111, 163

realistic sample a sample that lies on or close to the attractor of the dy-

namical system. 71

relative Ignorance when the ignorance of models is bench marked against

a �zero-skill" model. In this Thesis the �zero-skill� models used are

climatology and persistence.. 56, 57, 82, 83, 95, 96, 98�102, 105, 107,

125, 134

skill score a measure of how accurate the probabilistic forecasts are at pre-

dicting the outcomes. 34, 56, 112

skill measure of how accurate a model is at approximating the system it is

representing. 33, 34, 52, 56�58, 61, 62, 65, 81�84, 86, 94�96, 98�101,

107, 108, 112, 116�118, 120, 125, 129, 134, 137, 144, 146, 148, 150�152,

156, 158�161, 210, 228�231

technical advancements developments in crop growing methods that would

cause yield to rise given identical enviromental conditions for example

fertiliser, higher yielding cultivars and pest control. 33, 34, 37, 43,

45�48, 60, 164, 180, 194, 199, 201, 206, 208, 230
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Glossary

weighting the amount of weight each model's forecast is given. For example

if the multiple models are equally weighted the weight given to each

model's forecast is 1
m and where

∑m
i=1 αi = 1 where α is the weighting

parameter and m is the number of models. 98, 99
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