Lives and Livelihoods: Estimates of the global mortality and poverty effects of the Covid-19 pandemic

Inequality Seminar Series, III, LSE

B. Decerf, F. Ferreira, D. Mahler and O. Sterck

Namur, LSE, World Bank, Oxford

October 27, 2020

Intro

We evaluate the global welfare consequences of increases in mortality and poverty generated by the Covid-19 pandemic.

- Some policy responses imply a trade-off between lives and economic costs.
- Difficulty: joint evaluation of human lives and economic losses.
- Three main approaches
 - ◊ The price of a human life.
 But repugnant + distribution of losses.
 - ◊ Indirect mortality of economic losses.
 But strong assumptions on responses to these losses
 + Great Recession reduced mortality.
 - ♦ Social welfare defined as expected lifetime utility. **But** no parameter directly captures the trade-off ⇒ no decent basis for public debate.

We use an *approximation* of social welfare expressing key trade-off in years of human life (Baland et al, 2020).

- Covid-induced mortality: # lost-years (LY),
- Covid-induced economic losses: # poverty-years (PY),
- Normative parameter α : how many poverty-years are as bad as one lost-year?
 - ◊ Thought exp.: How many years of your remaining life would you be willing to spend in poverty in order to increase your lifespan by one year?
- We stay agnostic wrt α but present estimates of LY and PY.

Questions:

- Estimates of welfare consequences as of June 2020
 - Relative magnitude of mortality and poverty costs?
 - $\diamond\,$ Do these magnitudes vary systematically across countries?
- Counterfactual "No-Intervention" scenario
 - $\diamond~$ How do estimated welfare costs compare to those of "No-Intervention"?
 - > Does this comparison varies across countries?

Preview of results

As of June, poverty is in most countries the dominant source of welfare costs

- In 2/3 of high-income countries: $\frac{PY}{LY} > 10$, often $\frac{PY}{LY} > 100$
- In most developing countries: $\frac{PY}{LY} > 100$, often $\frac{PY}{LY} > 1000$

• In Belgium:
$$\frac{PY}{LY} = 3.6$$

"No-Intervention" scenario has worse consequences than estimated consequences as of June

- In nearly all high-income countries: $LY^{NI} > 3 * (PY^A + LY^A)$,
- In minority of low-income countries: $LY^{NI} < PY^A + LY^A$.

 \Rightarrow No evidence that "the cure has been worse than the disease".

Relative size of LY vs PY varies a lot as a function of GDP

- For given infection rates, LY are several times larger in high-income countries,
 - ◊ Older population pyramid,
 - ♦ Longer residual life expectancy at given age,
- For given (negative) growth, PY are smaller in high-income countries.
 Incomes are further away from poverty threshold.

Simple conceptual framework

Individual i's expected future lifetime utility

$$U_i = \sum_{t=2020}^{d_i} u(s_{it})$$
 where $s_{it} \in \{NP, P\}.$

Pandemic potentially affects individual *i* through

• **Poverty**: for one or more years $t \ge 2020$:

♦ $\Delta u_p = u(NP) - u(P)$ is instantaneous utility loss

Mortality: advances the year of her death to d'_i ≤ d_i

 ∆u_d = u(NP) is instantaneous utility loss

The welfare impact of the pandemic $\Delta W = \sum_i (U_i - U'_i)$ is a weighed sum:

$$\frac{\Delta W}{\Delta u_p} = \underbrace{\frac{\Delta u_d}{\Delta u_p}}_{\alpha} LY + PY \quad \text{where} \quad \alpha > 1.$$

Welfare costs as of June 2020

Subset of countries: Belgium, UK, Sweden, Pakistan, Peru and Philippines.

How do we compute our estimates?

Estimates of LY:

- # Covid-induced deaths by age categories,
- Residual life-expectancy at age of death.

Estimates of PY:

- Covid-induced recession: $GDP_{2020}^{Covid} \neq GDP_{2020}^{No \ Covid}$
- Income distribution in 2019 and national poverty threshold,
- Distribution-neutral recession: \Rightarrow additional # poor.
- Additional poverty lasts only for one year.

Poverty is dominant welfare cost if

$$\frac{Y}{Y} > \alpha$$

Break even $\hat{\alpha}$

Deaths are very concentrated among the old

Figure: Distribution of Covid-19 deaths per age in Sweden as of June.

 \Rightarrow Ignoring the age distribution of deaths inflates the LY by a factor of 4.5

Current welfare consequences

 Table 1: Estimation of the pandemic's welfare costs in six countries as of early June 2020 (baseline, distribution-neutral contraction)

	(1)	(2)	(3)	(4)	(5)	(6)				
	Belgium	Sweden	UK	Pakistan	Peru	Philippines				
Economic and demographic characteristics										
GDP p.c. in 2017 (2011 PPP\$)	43,133	47,261	40,229	4764	12,517	7580.8				
National poverty line (2011 PPP\$)	27	28.9	25.8	2.8	5.3	2.6				
Population (in millions)	11.59	10.10	67.88	221.0	32.98	109.5				
Life expectancy at birth	81.18	82.31	80.78	65.98	80.24	69.51				
Age (mean)	41.42	41.14	40.62	25.86	32.53	28.53				
Residual life expectancy (mean)	42.01	43.06	42.40	46.25	50.55	44.92				
Covid-19 mortality, current scenario										
Number of deaths	9605	4639	48,848	2056	5465	1002				
LYs per death	9.467	9.479	10.14	18.46	21.97	16.90				
LYs per person	0.00785	0.00435	0.00730	0.000172	0.00364	0.000155				
Covid-19 economic shock										
On GDP per capita (in %)	-8.5	-11.5	-14.5	-6.7	-13.1	-8.4				
On poverty HC (in million)	0.32	0.41	4.37	7.39	1.58	2.96				
On poverty HCR	0.0279	0.0409	0.0644	0.0335	0.0480	0.0270				
Break-even $\hat{\alpha}$	3.553	9.383	8.816	194.8	13.20	174.8				

Current welfare consequences in the World

Estimates of LY without age-specific mortality:

- # Covid-induced deaths, IFR from China (Verity 2020) & France (Salje 2020)
- Given population pyramid, which infection rate matches # deaths, assuming contamination constant across ages.

No-intervention scenario

Cannot compare mortality in t as countries are at different phases of epidemic.

"No-Intervention" scenario

• Epidemic stops at 80% infection rate (Banerjee 2020).

Estimates of LY: 80% infection rate

- IFR from China or France
- Two scenarios: hospitals saturated or not
- Differences in LY^{NI} come from
 - ◊ Population pyramids,
 - ◊ Residual life expectancies,
 - ◊ IFRs used (China and France),

Estimates of PY: Assume conservatively $PY^{NI} = 0$ (implausible)

"No-Intervention" has larger welfare costs if $\alpha LY^{NI} > PY^A + \alpha LY^A$

$$\frac{PY^{A}}{\underbrace{LY^{NI} - LY^{A}}_{Break even \tilde{\alpha}} < \alpha$$

No-Intervention has worse welfare consequences

Clear in rich countries under extreme poverty threshold

Robustness check for 50 % infection rate

Robustness check for 50 % infection rate

Estimating the current welfare consequences of the Covid-19 pandemic:

- As of June, poverty is in most countries the dominant source of welfare costs
- Counterfactual "No-Intervention" scenario has worse consequences than consequences as of June,

 \Rightarrow the cure does not seem worse than the disease.

• The more developed a country, the larger are mortality costs and the smaller are poverty costs.

 \Rightarrow Best policy responses might be more targetted towards containing infections in rich countries and towards containing poverty in poor countries.

Estimates of PY and LY

Table 4: Lives and livelihoods - pandemic's aggregate effects on mortality and poverty (Current = early June 2020)

	(1)	(2)	(3)	(A)	(5)
		(2)		(4)	(0)
	LIC	LMIC	UMIC	HIC	World
Total number of Covid-19 of	leaths, in	million			
Current scenario	0.000773	0.0171	0.0883	0.290	0.397
No intervention, no saturation	1.015	9.396	14.82	7.387	32.66
No intervention, saturation	1.159	10.23	15.61	13.28	40.32
Total increase in lost-years,	in millio	n			
Current scenario	0.0113	0.221	1.204	2.893	4.330
No intervention, no saturation	14.73	121.4	195.9	73.75	406.4
No intervention, saturation	20.59	153.7	227.8	157.9	560.7
Total increase in poverty-ye	ears, in m	illion			
Distribution-neutral scenario					
1.9 PPP-\$ poverty line	13.74	47.12	6.780	0.235	68.22
WB classification poverty line	13.74	138.7	53.90	28.46	234.8