MA203 Exam-2016

 Solutions

 Solutions}

Question 1

Solution to Question 1 (a) $[2+2=4$ marks $]$

(i) [2 marks] Let $s_{n}=\sum_{k=1}^{n} x_{k}$ for each $n \in \mathbb{N}$. We say that the series $\sum_{n=1}^{\infty} x_{n}$ converges, if the sequence $\left(s_{n}\right)$ of partial sums converges. In such case we write $\sum_{n=1}^{\infty} x_{n}=\lim _{n \rightarrow \infty} s_{n}$ and we call this limit the sum or the value of the series.
(ii) [2 marks] We say that the series $\sum_{n=1}^{\infty} x_{n}$ converges absolutely if $\sum_{n=1}^{\infty}\left|x_{n}\right|$ is convergent.
Solution to Question 1 (b) [5 marks]
Consider the alternating series $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$. Since the sequence $\left(\frac{1}{n}\right)$ has positive terms, is decreasing and converges to zero, it follows by the Leibniz Alternating Series Test that $\sum_{n=1}^{\infty} \frac{(-1)^{n}}{n}$ converges. However the series is not absolutely convergent as $\sum_{n=1}^{\infty}\left|\frac{(-1)^{n}}{n}\right|$ is the harmonic series $\sum_{n=1}^{\infty} \frac{1}{n}$, which is divergent.

Solution to Question 1 (c) [5 marks]

The statement is false. Consider for example the harmonic series, $\sum_{n=1}^{\infty} \frac{1}{n}$. Then

$$
\lim _{n \rightarrow \infty}\left|s_{n+1}-s_{n}\right|=\lim _{n \rightarrow \infty} \frac{1}{n+1}=0
$$

However the sequence $\left(s_{n}\right)$ is not Cauchy. Observe that for any n in \mathbb{N} we have that

$$
s_{2 n}-s_{n}=\frac{1}{n+1}+\frac{1}{n+2}+\cdots+\frac{1}{2 n}>\frac{n}{2 n}=\frac{1}{2} .
$$

This shows that $\left(s_{n}\right)$ is not Cauchy and so the series $\sum_{n=0}^{\infty} \frac{1}{n}$ diverges.

Solution to Question 1 (d) [4 marks]

The proof is wrong. The fact $\left(\left|x_{n}\right|\right)$ converges to zero does not imply that $\sum_{n=1}^{\infty}\left|x_{n}\right|$ converges. As a counterexample consider the harmonic series.

Solution to Question 1 (e) [7 marks]

Let $x_{n}=\frac{n}{2^{n}(3 n-1)}$. Then we see that

$$
\lim _{n \rightarrow \infty}\left|\frac{x_{n+1}}{x_{n}}\right|=\lim _{n \rightarrow \infty} \frac{3 n^{2}+2 n-1}{6 n^{2}+4 n}=\frac{1}{2} .
$$

It follows that the power series converges for $|x-1|<2$, that is for $-1<x<3$, and diverges for $x>3$ and $x<-1$.

If $x=-1$ then the series becomes

$$
\sum_{n=1}^{\infty} \frac{(-1)^{n} n}{3 n-1}
$$

Let $a_{n}=\frac{(-1)^{n} n}{3 n-1}$. The sequence $\left(a_{n}\right)$ does not converge to zero (it is actually divergent since $a_{2 n} \rightarrow \frac{1}{3}$ and $a_{2 n-1} \rightarrow-\frac{1}{3}$), and so the series diverges.
If $x=3$ then the series becomes $\sum_{n=1}^{\infty} \frac{n}{3 n-1}$. The sequence $\left(\frac{n}{3 n-1}\right)$ does not converge to zero and so the series diverges.
We conclude that the power series diverges for $x \in(-\infty,-1] \cup[3, \infty)$.

Question 2

Solution to Question 2 (a) [6 marks]

(i) A set F is closed if and only if F^{c} is open.
(ii) A set F is closed if and only if $F=\left\{x \in X \mid V_{\epsilon}(x) \cap F \neq \emptyset\right.$ for all $\left.\epsilon>0\right\}$.
(iii) A set F is closed if only if for every sequence $\left(x_{n}\right)$ in F which converges, we have that $\lim x_{n} \in F$.

Solution to Question 2 (b) $[2+4+3+2=11$ marks $]$
(i) The illustration is given in a separate file.
(ii) The set E is neither open nor closed.
E is not open. Consider the point $(2,3)$. Then no ϵ-nhood, $V_{\epsilon}(2,3)$, of $(2,3)$ is contained in E. For example $\left(2+\frac{\epsilon}{2}, 3\right) \in V_{\epsilon}(2,3)$ but $\left(2+\frac{\epsilon}{2}, 3\right) \notin E$.
E is not closed since $E \neq c l(E)$. For example consider the point $x=(1,1)$. Then every ϵ-nhood of x intersects E, but x does not belong to E.
(iii) The interior of the set E is given by

$$
\operatorname{int}(E)=\left\{(x, y) \in \mathbb{R}^{2} \mid 1<x<2,1<y<4\right\}
$$

The closure of the set E is given by

$$
c l(E)=\left\{(x, y) \in \mathbb{R}^{2} \mid 1 \leq x \leq 2,1 \leq y \leq 4\right\} \cup\left\{(2, y) \in \mathbb{R}^{2} \mid-\infty<y<\infty\right\}
$$

(iv) The boundary of E^{c} is given by,

$$
\begin{aligned}
& b d\left(E^{c}\right)= \\
& \quad\{(x, 1) \mid 1 \leq x \leq 2\} \cup\{(x, 4) \mid 1 \leq x \leq 2\} \cup\{(1, y) \mid 1 \leq y \leq 4\} \cup\{(2, y) \mid y \in \mathbb{R}\}
\end{aligned}
$$

A graphical illustration of the boundary is also acceptable. One point will be given if the set is not given but it is mentioned that the boundary of E^{c} is equal to the boundary of E.

Solution to Question 2 (c) [$4+4=8$ marks]

(i) First we show that $\operatorname{cl}\left(V_{r}(x)\right) \subseteq C_{r}(x)$. Since $V_{r}(x) \subseteq C_{r}(x)$ and $C_{r}(x)$ is a closed set and $\operatorname{cl}\left(V_{r}(x)\right)$ is the smallest closed set containing $V_{r}(x)$, it follows that $c l\left(V_{r}(x)\right) \subseteq C_{r}(x)$.
For the converse inclusion let $y \in C_{r}(x)$. We claim that there is a sequence $\left(y_{n}\right)$ in $V_{r}(x)$ such that $y_{n} \rightarrow y$. It follows that $y \in \operatorname{cl}\left(V_{r}(x)\right)$ and so $C_{r}(x) \subseteq c l\left(V_{r}(x)\right)$. Proof of claim: For every $n \in \mathbb{N}$ set $y_{n}=\frac{1}{n} x+\left(1-\frac{1}{n}\right) y$. Then $y_{n} \in V_{r}(x)$ for each $n \in \mathbb{N}$. Therefore $\left(y_{n}\right)$ is a sequence in $V_{r}(x)$. Also for any $n \in \mathbb{N}$

$$
\left\|y-y_{n}\right\|_{2}=\frac{1}{n}\|x-y\|_{2}<\frac{1}{n} r
$$

and thus $y_{n} \rightarrow y$.
(ii) The metrics induced by the norms $\|\cdot\|_{2}$ and $\|\cdot\|_{\infty}$ are strongly equivalent. Specifically we have that

$$
d_{\infty}(x, y) \leq d_{2}(x, y) \leq 2 d_{\infty}(x, y)
$$

It follows that the d_{2} and d_{∞} metrics are topologically equivalent and thus give rise to the same collection of open sets. So since $C_{r}(x)$ is closed in $\left(\mathbb{R}^{2},\|\cdot\|_{2}\right)$, it must also be closed in $\left(\mathbb{R}^{2},\|\cdot\|_{\infty}\right)$.

Question 3

Solution to Question 3 (a) [2+4=6 marks]
(i) A sequence $\left(x_{n}\right)$ in a metric space (X, d) is said to converge to $x \in X$ if for any $\epsilon>0$ there is $N \in \mathbb{N}$ such that $d\left(x_{n}, x\right)<\epsilon$ for all $n>N$.
(ii) For $n \in \mathbb{N}$ let $\epsilon=\frac{1}{n}>0$. Then, since $V_{\frac{1}{n}}(x) \cap E \neq \emptyset$ there is $x_{n} \in V_{\frac{1}{n}}(x) \cap E$.

The sequence $\left(x_{n}\right)$ is in E and $d\left(x_{n}, x\right)<\frac{1}{n}^{n}$ for all $n \in \mathbb{N}$. The latter implies that $\lim _{n \rightarrow \infty} d\left(x_{n}, x\right)=0$ and thus $\lim _{n \rightarrow \infty} x_{n}=x$.

Solution to Question 3 (b) $[2+3+5=10$ marks $]$
(i) A subset C of X is said to be compact in X if every open cover of C has a finite subcover.
(ii) Either $\mathcal{U}=\left\{V_{n}(x) \mid n \in \mathbb{N}\right\}$ for some $x \in E$ or $\mathcal{U}=\left\{V_{1}(x) \mid x \in E\right\}$ for $\epsilon=1$.

Graphical illustrations are provided in a separate file.
(iii) Let (X, d) be a discrete metric space and $C \subseteq X$ be compact. The collection $\mathcal{U}=\left\{V_{1}(x) \mid x \in C\right\}$, is an open cover for C and since C is compact it has a finite subcover. This finite subcover is of the form $\mathcal{U}^{\prime}=\left\{V_{1}\left(x_{1}\right), \ldots, V_{1}\left(x_{k}\right)\right\}$, where $x_{1}, \ldots, x_{k} \in C$. Since $V_{1}(x)=\{x\}$ for every $x \in X$ and since \mathcal{U}^{\prime} covers C we have that

$$
C \subseteq \bigcup_{i=1}^{k} V_{1}\left(x_{i}\right)=\left\{x_{1}, \ldots, x_{k}\right\}
$$

It follows that C is finite.

Solution to Question 3 (c) $[4+5=9$ marks $]$

(i) Let (X, d) be a compact metric space and suppose $\left(x_{n}\right)$ is a Cauchy sequence in X. Then by the compactness of X we have that $\left(x_{n}\right)$ has a convergent subsequence, say $\left(x_{n_{k}}\right)$, with $\lim x_{n_{k}}=x \in X$. Since $\left(x_{n}\right)$ is Cauchy we have that $\left(x_{n}\right)$ converges to x and so X is complete.
(ii) The converse statement is: Every complete metric space is compact. The statement is false. The metric space $(\mathbb{R},|\cdot|)$ is complete but not compact.
To show that \mathbb{R} is not compact we either show that the sequence (n) does not have a convergent subsequence or that the open cover $\{(-n, n) \mid n \in \mathbb{N}\}$ does not have a finite subcover.
Method 1: Let $\left(x_{n_{k}}\right)$ be any subsequence of (n). The distance between any two distinct terms of $\left(x_{n_{k}}\right)$ is at least 1 and thus $\left(x_{n_{k}}\right)$ cannot be Cauchy and hence not convergent. It follows that \mathbb{R} is not compact.
Method 2: Consider the family of open sets given below:

$$
\mathcal{U}=\left\{V_{n}(0) \mid n \in \mathbb{N}\right\}=\{(-n, n) \mid n \in \mathbb{N}\} .
$$

First we show that $\mathbb{R} \subseteq \bigcup_{n \in \mathbb{N}}(-n, n)$. Indeed (see Archimedean property) for any $x \in \mathbb{R}$ there is $m \in \mathbb{N}$ such that $x<m$. Hence $x \in(-m, m)$ and so $x \in \bigcup_{n \in \mathbb{N}}(-n, n)$.
The open cover \mathcal{U} does not have a finite subcover for \mathbb{R}. Any finite subcover will be of the form

$$
\left\{\left(-n_{1}, n_{1}\right),\left(-n_{2}, n_{2}\right), \ldots,\left(-n_{k}, n_{k}\right)\right\}
$$

for some $k \in \mathbb{N}$ and does not cover \mathbb{R}. Indeed if $N=\max \left\{n_{1}, n_{2}, \ldots, n_{k}\right\}$ then clearly $N+1 \in \mathbb{R}$ but not in $\bigcup_{i=1}^{k}\left(-n_{i}, n_{i}\right)$. So \mathbb{R} is not compact.

Question 4

Solution to Question 4 (a) [4+5=9 marks]
Let $c \in X$. By continuity, given $\epsilon=1>0$ there is $\delta_{c}=\delta(1, c)>0$ such that $|f(x)-f(c)|<1$ for all $x \in V_{\delta}(c)$. It follows that if $x \in V_{\delta}(c)$, then $|f(x)|<M_{c}$ where $M_{c}=1+|f(c)|>0$.
(ii) From part (i) we have that around each $c \in X$ there is a nhood $V_{\delta_{c}}(c)$ where the function f is bounded by a constant $M_{c}>0$.
X not compact. A global bound for the function could be $M=\sup _{c \in X} M_{c}$. However, unless the set X is finite, M may not exist.
Compactness means that the set X has some sort of finite structure. The finite structure of the compact set X allows us to construct a global bound as follows. The family

$$
\left\{V_{\delta_{c}}(c) \mid c \in X\right\}
$$

is an open cover for X and thus it has a finite subcover, say $\left\{V_{\delta_{c_{1}}}\left(c_{1}\right), \ldots, V_{\delta_{c_{k}}}\left(c_{k}\right)\right\}$. In each of the nhoods $V_{\delta_{c_{i}}}\left(c_{i}\right)$ the function f is bounded by a constant $M_{c_{i}}>0$. The maximum of these finitely many local bounds is a global bound for f on X. Also acceptable if a proof and a counterexample are given.

Solution to Question 4 (b) [6 marks]

To show that $f^{-1}: Y \rightarrow X$ is continuous it is enough to show that for every closed subset C of X the set $\left(f^{-1}\right)^{-1}(C)=f(C)$ is a closed subset of Y. Let C be a closed subset of X. Then since every closed subset of a compact metric space is compact, we have that C is compact. By continuity of f we have that $f(C)$ is a compact subset of Y. Since every compact set is closed, it follows that $f(C)$ is closed and thus f^{-1} is continuous.

Solution to Question 4 (c) $[3+5+2=10$ marks]

(i) $f: X \rightarrow Y$ is not uniformly continuous, if there is $\epsilon_{0}>0$ such that for all $\delta>0$ there are $x, z \in X(x, z$ depend on $\delta)$ with $d_{X}(x, z)<\delta$ and $d_{Y}(f(x), f(z)) \geq \epsilon_{0}$.
(ii) To show that $x \mapsto x^{2}$ is not uniformly continuous on \mathbb{R} we will use the nonuniform continuity criterion that is derived from part (i). If we take $\delta=\frac{1}{n}$ then we have that $f: X \rightarrow Y$ is not uniformly continuous, if there is $\epsilon_{0}>0$ and two sequences $\left(x_{n}\right)$ and $\left(z_{n}\right)$ in X, such that, $\lim d_{X}\left(x_{n}, z_{n}\right)=0$ and $d_{Y}\left(f\left(x_{n}\right), f\left(z_{n}\right)\right) \geq \epsilon_{0}$.

Let $\epsilon_{0}=1>0$. For every $n \in \mathbb{N}$, let $x_{n}=2 n$ and $y_{n}=2 n+\frac{1}{2 n}$. Then for all $n \in \mathbb{N}$

$$
\left|x_{n}-y_{n}\right|=\frac{1}{2 n}<\frac{1}{n}
$$

and so $\lim \left|x_{n}-y_{n}\right|=0$. Also

$$
\left|x_{n}^{2}-y_{n}^{2}\right|=\left|(2 n)^{2}-\left(2 n+\frac{1}{2 n}\right)^{2}\right|=2+\frac{1}{4 n^{2}}>1
$$

It follows that $x \mapsto x^{2}$ is not uniformly continuous on \mathbb{R}.
(iii) Let C be a compact subset of \mathbb{R} then the following is true: If $f: C \rightarrow \mathbb{R}$ is continuous then f is uniformly continuous. Also any closed and bounded interval $[a, b]$ is compact. So since $x \mapsto x^{2}$ is continuous on $[a, b]$ is it will also be uniformly continuous.

Question 5

Solution to Question 5 (a) $[2+4=6$ marks $]$
(i) Suppose that f is continuous on $[a, b]$ and differentiable on (a, b). Then there exists $c \in(a, b)$ such that

$$
f(b)-f(a)=f^{\prime}(c)(b-a)
$$

(ii) Let $x>0$. Then the function $g-f$ is continuous on $[0, x]$ and differentiable on $(0, x)$. It follows by the MVT that there is $c \in(0, x)$ such that

$$
(g-f)(x)-(g-f)(0)=(g-f)^{\prime}(c)(x-0) .
$$

So, since $g^{\prime}(c) \geq f^{\prime}(c)$, we have that for all $x>0$,

$$
g(x)-f(x)=x\left(\left(g^{\prime}(c)-f^{\prime}(c)\right) \geq 0\right.
$$

This, together with the fact that $f(0)=g(0)$ imply that $f(x) \leq g(x)$ for all $x \geq 0$.

Solution to Question 5 (b) $[\mathbf{3 + 6}=\mathbf{9}$ marks] (i) A bounded function $f:[a, b] \rightarrow$ \mathbb{R} is called Riemann integrable if its lower and upper integrals are equal,

$$
\sup _{\mathrm{P} \in \mathcal{P}} L(f, \mathrm{P})=L(f)=U(f)=\inf _{\mathrm{P} \in \mathcal{P}} U(f, \mathrm{P}) .
$$

The common value of the upper and lower integrals is denoted by $\int_{a}^{b} f(x) d x$ and is called the Riemann integral of f.
Where

$$
U(f, \mathrm{P})=\sum_{k=1}^{n} M_{k}\left(x_{k}-x_{k-1}\right) \text { and } L(f, \mathrm{P})=\sum_{k=1}^{n} m_{k}\left(x_{k}-x_{k-1}\right),
$$

and

$$
M_{k}=\sup _{x \in\left[x_{k-1}, x_{k}\right]} f(x) \text { and } m_{k}=\inf _{x \in\left[x_{k-1}, x_{k}\right]} f(x) .
$$

(ii) For any $n \geq 2$ let

$$
\mathrm{P}_{n}=\left\{0,4-\frac{1}{n}, 4+\frac{1}{n}, 5\right\},
$$

be a partition of $[0,5]$. Then $I_{1}=\left[0,4-\frac{1}{n}\right], I_{2}=\left[4-\frac{1}{n}, 4+\frac{1}{n}\right]$ and $I_{3}=\left[4+\frac{1}{n}, 5\right]$. Thus

$$
U\left(f, \mathrm{P}_{n}\right)=3\left(4-\frac{1}{n}\right)+3 \frac{2}{n}+3\left(1-\frac{1}{n}\right),
$$

and

$$
L\left(f, \mathrm{P}_{n}\right)=3\left(4-\frac{1}{n}\right)+1 \frac{2}{n}+3\left(1-\frac{1}{n}\right) .
$$

Hence

$$
U\left(f, \mathrm{P}_{n}\right)-L\left(f, \mathrm{P}_{n}\right)=0+\frac{4}{n}+0=\frac{4}{n}
$$

Hence $\lim _{n \rightarrow \infty}\left(U\left(f, \mathrm{P}_{n}\right)-L\left(f, \mathrm{P}_{n}\right)\right)=0$ and so f is integrable with

$$
\int_{0}^{5} f=\lim _{n \rightarrow \infty} U\left(f, \mathrm{P}_{n}\right)=\lim _{n \rightarrow \infty}\left(12-\frac{3}{n}+\frac{6}{n}+3-\frac{3}{n}\right)=15
$$

Solution to Question 5 (c) $[3+7=10$ marks]
(i) Let $\left(f_{n}\right)$ be a sequence of real valued functions defined on E. The sequence $\left(f_{n}\right)$ is said to converge uniformly to a function $f: E \rightarrow \mathbb{R}$ if
$\forall \epsilon>0, \exists N=N(\epsilon) \in \mathbb{N}$ such that $\forall x \in E,\left|f_{n}(x)-f(x)\right|<\epsilon, \forall n>N$.
(ii) We will use the following criterion.

Let $\left(f_{n}\right)$ be a sequence of real-valued functions defined on a set E, that converges pointwise to $f: E \rightarrow \mathbb{R}$. Set

$$
M_{n}=\sup _{x \in E}\left|f_{n}(x)-f(x)\right| .
$$

Then $f_{n} \rightrightarrows f$ if and only if $M_{n} \rightarrow 0$ as $n \rightarrow \infty$.
Observe that for all $x \in \mathbb{R}$ we have that

$$
-\frac{1}{n} \leq \frac{\sin n^{2} x}{n} \leq \frac{1}{n}
$$

It follows that $f_{n}(x) \rightarrow 0$ for all $x \in \mathbb{R}$. Hence the sequence $\left(f_{n}\right)$ converges pointwise to the zero function, f, on \mathbb{R}.
We also have that

$$
M_{n}=\sup _{x \in \mathbb{R}}\left|f_{n}(x)-f(x)\right|=\sup _{x \in \mathbb{R}}\left|\frac{\sin n^{2} x}{n}\right|=\frac{1}{n}
$$

Since $\lim _{n \rightarrow \infty} M_{n}=0$ we conclude that the sequence $\left(f_{n}\right)$ converges uniformly to the zero function, f, on \mathbb{R}.

MA203: Real Analysis exam (2016)

Graphical illustrations
The graphical illustrations guide is hand written to clearly indicate what is expected by the students.

Question 2(b)(i)

Question 3(a)(ii)

Question 3(b)(ii)

Example 1

Example 2

