
MA203 Exam-2016

Solutions

Question 1

Solution to Question 1 (a) [2+2=4 marks]
(i) [2 marks] Let s

n

=
P

n

k=1 xk

for each n 2 N. We say that the series
P1

n=1 xn

converges, if the sequence (s
n

) of partial sums converges. In such case we writeP1
n=1 xn

= lim
n!1

s

n

and we call this limit the sum or the value of the series. ⇤

(ii) [2 marks] We say that the series
P1

n=1 xn

converges absolutely if
P1

n=1 |xn

| is
convergent.
Solution to Question 1 (b) [5 marks]
Consider the alternating series

P1
n=1

(�1)n

n

. Since the sequence ( 1
n

) has positive
terms, is decreasing and converges to zero, it follows by the Leibniz Alternating
Series Test that

P1
n=1

(�1)n

n

converges. However the series is not absolutely

convergent as
P1

n=1

��� (�1)n

n

��� is the harmonic series
P1

n=1
1
n

, which is divergent. ⇤

Solution to Question 1 (c) [5 marks]
The statement is false. Consider for example the harmonic series,

P1
n=1

1
n

. Then

lim
n!1

|s
n+1 � s

n

| = lim
n!1

1

n+ 1
= 0.

However the sequence (s
n

) is not Cauchy. Observe that for any n in N we have
that

s2n � s

n

=
1

n+ 1
+

1

n+ 2
+ · · ·+ 1

2n
>

n

2n
=

1

2
.

This shows that (s
n

) is not Cauchy and so the series
P1

n=0
1
n

diverges. ⇤

Solution to Question 1 (d) [4 marks]
The proof is wrong. The fact (|x

n

|) converges to zero does not imply thatP1
n=1 |xn

| converges. As a counterexample consider the harmonic series. ⇤

Solution to Question 1 (e) [7 marks]
Let x

n

= n

2n(3n�1) . Then we see that

lim
n!1

����
x

n+1

x

n

���� = lim
n!1

3n2 + 2n� 1

6n2 + 4n
=

1

2
.

It follows that the power series converges for |x� 1| < 2, that is for �1 < x < 3,
and diverges for x > 3 and x < �1.
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If x = �1 then the series becomes

1X

n=1

(�1)nn

3n� 1
.

Let a

n

= (�1)nn
3n�1 . The sequence (a

n

) does not converge to zero (it is actually
divergent since a2n ! 1

3 and a2n�1 ! �1
3), and so the series diverges.

If x = 3 then the series becomes
P1

n=1
n

3n�1 . The sequence ( n

3n�1) does not
converge to zero and so the series diverges.
We conclude that the power series diverges for x 2 (�1,�1] [ [3,1). ⇤

Question 2

Solution to Question 2 (a) [6 marks]
(i) A set F is closed if and only if F c is open.
(ii) A set F is closed if and only if F = {x 2 X| V

✏

(x) \ F 6= ; for all ✏ > 0}.
(iii) A set F is closed if only if for every sequence (x

n

) in F which converges, we
have that limx

n

2 F .

Solution to Question 2 (b) [2+4+3+2=11 marks]
(i) The illustration is given in a separate file.
(ii) The set E is neither open nor closed.
E is not open. Consider the point (2, 3). Then no ✏-nhood, V

✏

(2, 3), of (2, 3) is
contained in E. For example (2 + ✏

2 , 3) 2 V

✏

(2, 3) but (2 + ✏

2 , 3) /2 E.
E is not closed since E 6= cl(E). For example consider the point x = (1, 1). Then
every ✏-nhood of x intersects E, but x does not belong to E.
(iii) The interior of the set E is given by

int(E) = {(x, y) 2 R2| 1 < x < 2, 1 < y < 4}.

The closure of the set E is given by

cl(E) = {(x, y) 2 R2| 1  x  2, 1  y  4} [ {(2, y) 2 R2|�1 < y < 1}.

(iv) The boundary of Ec is given by,

bd(Ec) =

{(x, 1)|1  x  2} [ {(x, 4)|1  x  2} [ {(1, y)|1  y  4} [ {(2, y)|y 2 R}.

A graphical illustration of the boundary is also acceptable. One point will be
given if the set is not given but it is mentioned that the boundary of Ec is equal
to the boundary of E.
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Solution to Question 2 (c) [4+4=8 marks]
(i) First we show that cl(V

r

(x)) ✓ C

r

(x). Since V

r

(x) ✓ C

r

(x) and C

r

(x) is a
closed set and cl(V

r

(x)) is the smallest closed set containing V

r

(x), it follows that
cl(V

r

(x)) ✓ C

r

(x).
For the converse inclusion let y 2 C

r

(x). We claim that there is a sequence (y
n

)
in V

r

(x) such that y
n

! y. It follows that y 2 cl(V
r

(x)) and so C

r

(x) ✓ cl(V
r

(x)).
Proof of claim: For every n 2 N set y

n

= 1
n

x+(1� 1
n

)y. Then y

n

2 V

r

(x) for each
n 2 N. Therefore (y

n

) is a sequence in V

r

(x). Also for any n 2 N

||y � y

n

||2 =
1

n

||x� y||2 <
1

n

r,

and thus y
n

! y. ⇤
(ii) The metrics induced by the norms || · ||2 and || · ||1 are strongly equivalent.
Specifically we have that

d1(x, y)  d2(x, y)  2d1(x, y).

It follows that the d2 and d1 metrics are topologically equivalent and thus give
rise to the same collection of open sets. So since C

r

(x) is closed in (R2
, || · ||2), it

must also be closed in (R2
, || · ||1). ⇤

Question 3

Solution to Question 3 (a) [2+4=6 marks]
(i) A sequence (x

n

) in a metric space (X, d) is said to converge to x 2 X if for
any ✏ > 0 there is N 2 N such that d(x

n

, x) < ✏ for all n > N .
(ii) For n 2 N let ✏ = 1

n

> 0. Then, since V

1
n
(x) \E 6= ; there is x

n

2 V

1
n
(x) \E.

The sequence (x
n

) is in E and d(x
n

, x) < 1
n

for all n 2 N. The latter implies that
lim
n!1

d(x
n

, x) = 0 and thus lim
n!1

x

n

= x. ⇤

Solution to Question 3 (b) [2+3+5=10 marks]
(i) A subset C of X is said to be compact in X if every open cover of C has a
finite subcover.
(ii) Either U = {V

n

(x)|n 2 N} for some x 2 E or U = {V1(x)|x 2 E} for ✏ = 1.
Graphical illustrations are provided in a separate file.
(iii) Let (X, d) be a discrete metric space and C ✓ X be compact. The collection
U = {V1(x)|x 2 C}, is an open cover for C and since C is compact it has a finite
subcover. This finite subcover is of the form U 0 = {V1(x1), . . . , V1(xk

)}, where
x1, . . . , xk

2 C. Since V1(x) = {x} for every x 2 X and since U 0 covers C we have
that

C ✓
k[

i=1

V1(xi

) = {x1, . . . , xk

}.
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It follows that C is finite. ⇤

Solution to Question 3 (c) [4+5=9 marks]
(i) Let (X, d) be a compact metric space and suppose (x

n

) is a Cauchy sequence
in X. Then by the compactness of X we have that (x

n

) has a convergent subse-
quence, say (x

nk
), with lim x

nk
= x 2 X. Since (x

n

) is Cauchy we have that (x
n

)
converges to x and so X is complete. ⇤
(ii) The converse statement is: Every complete metric space is compact. The
statement is false. The metric space (R, | · |) is complete but not compact.
To show that R is not compact we either show that the sequence (n) does not
have a convergent subsequence or that the open cover {(�n, n)| n 2 N} does not
have a finite subcover.
Method 1 : Let (x

nk
) be any subsequence of (n). The distance between any two

distinct terms of (x
nk
) is at least 1 and thus (x

nk
) cannot be Cauchy and hence

not convergent. It follows that R is not compact.
Method 2 : Consider the family of open sets given below:

U = {V
n

(0) | n 2 N} = {(�n, n) | n 2 N}.

First we show that R ✓
S

n2N(�n, n). Indeed (see Archimedean property) for
any x 2 R there is m 2 N such that x < m. Hence x 2 (�m,m) and so
x 2

S
n2N(�n, n).

The open cover U does not have a finite subcover for R. Any finite subcover will
be of the form

{(�n1, n1), (�n2, n2), . . . , (�n

k

, n

k

)},
for some k 2 N and does not cover R. Indeed if N = max{n1, n2, . . . , nk

} then
clearly N + 1 2 R but not in

S
k

i=1(�n

i

, n

i

). So R is not compact. ⇤

Question 4

Solution to Question 4 (a) [4+5=9 marks]
Let c 2 X. By continuity, given ✏ = 1 > 0 there is �

c

= �(1, c) > 0 such that
|f(x) � f(c)| < 1 for all x 2 V

�

(c). It follows that if x 2 V

�

(c), then |f(x)| < M

c

where M

c

= 1 + |f(c)| > 0.
(ii) From part (i) we have that around each c 2 X there is a nhood V

�c(c) where
the function f is bounded by a constant M

c

> 0.
X not compact. A global bound for the function could be M = sup

c2X
M

c

. However,

unless the set X is finite, M may not exist.
Compactness means that the set X has some sort of finite structure. The finite
structure of the compact set X allows us to construct a global bound as follows.
The family

{V
�c(c) | c 2 X}
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is an open cover forX and thus it has a finite subcover, say {V
�c1

(c1), . . . , V�ck
(c

k

)}.
In each of the nhoods V

�ci
(c

i

) the function f is bounded by a constant M
ci > 0.

The maximum of these finitely many local bounds is a global bound for f on X.
Also acceptable if a proof and a counterexample are given.

Solution to Question 4 (b) [6 marks]
To show that f

�1 : Y ! X is continuous it is enough to show that for every
closed subset C of X the set (f�1)�1(C) = f(C) is a closed subset of Y . Let
C be a closed subset of X. Then since every closed subset of a compact metric
space is compact, we have that C is compact. By continuity of f we have that
f(C) is a compact subset of Y . Since every compact set is closed, it follows that
f(C) is closed and thus f�1 is continuous. ⇤

Solution to Question 4 (c) [3+5+2=10 marks]
(i) f : X ! Y is not uniformly continuous, if there is ✏0 > 0 such that for all � > 0
there are x, z 2 X (x, z depend on �) with d

X

(x, z) < � and d

Y

(f(x), f(z)) � ✏0.

(ii) To show that x 7! x

2 is not uniformly continuous on R we will use the
nonuniform continuity criterion that is derived from part (i). If we take � = 1

n

then we have that f : X ! Y is not uniformly continuous, if there is ✏0 > 0
and two sequences (x

n

) and (z
n

) in X, such that, lim d

X

(x
n

, z

n

) = 0 and
d

Y

(f(x
n

), f(z
n

)) � ✏0.

Let ✏0 = 1 > 0. For every n 2 N, let x
n

= 2n and y

n

= 2n + 1
2n . Then for all

n 2 N
|x

n

� y

n

| = 1

2n
<

1

n

and so lim |x
n

� y

n

| = 0. Also

|x2
n

� y

2
n

| = |(2n)2 � (2n+
1

2n
)2| = 2 +

1

4n2
> 1.

It follows that x 7! x

2 is not uniformly continuous on R. ⇤

(iii) Let C be a compact subset of R then the following is true: If f : C ! R
is continuous then f is uniformly continuous. Also any closed and bounded
interval [a, b] is compact. So since x 7! x

2 is continuous on [a, b] is it will also be
uniformly continuous.
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Question 5

Solution to Question 5 (a) [2+4=6 marks]
(i) Suppose that f is continuous on [a, b] and di↵erentiable on (a, b). Then there
exists c 2 (a, b) such that

f(b)� f(a) = f

0(c)(b� a).

(ii) Let x > 0. Then the function g � f is continuous on [0, x] and di↵erentiable
on (0, x). It follows by the MVT that there is c 2 (0, x) such that

(g � f)(x)� (g � f)(0) = (g � f)0(c)(x� 0).

So, since g

0(c) � f

0(c), we have that for all x > 0,

g(x)� f(x) = x((g0(c)� f

0(c)) � 0.

This, together with the fact that f(0) = g(0) imply that f(x)  g(x) for all
x � 0. ⇤

Solution to Question 5 (b) [3+6=9 marks] (i) A bounded function f : [a, b] !
R is called Riemann integrable if its lower and upper integrals are equal,

sup
P2P

L(f,P) = L(f) = U(f) = inf
P2P

U(f,P).

The common value of the upper and lower integrals is denoted by
R

b

a

f(x)dx and
is called the Riemann integral of f .
Where

U(f,P) =
nX

k=1

M

k

(x
k

� x

k�1) and L(f,P) =
nX

k=1

m

k

(x
k

� x

k�1),

and
M

k

= sup
x2[xk�1,xk]

f(x) and m

k

= inf
x2[xk�1,xk]

f(x).

(ii) For any n � 2 let

P
n

= {0, 4� 1

n

, 4 +
1

n

, 5},

be a partition of [0, 5]. Then I1 = [0, 4� 1
n

], I2 = [4� 1
n

, 4+ 1
n

] and I3 = [4+ 1
n

, 5].
Thus

U(f,P
n

) = 3(4� 1

n

) + 3
2

n

+ 3(1� 1

n

),

and

L(f,P
n

) = 3(4� 1

n

) + 1
2

n

+ 3(1� 1

n

).
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Hence

U(f,P
n

)� L(f,P
n

) = 0 +
4

n

+ 0 =
4

n

.

Hence lim
n!1

(U(f,P
n

)� L(f,P
n

)) = 0 and so f is integrable with

Z 5

0

f = lim
n!1

U(f,P
n

) = lim
n!1

(12� 3

n

+
6

n

+ 3� 3

n

) = 15. ⇤

Solution to Question 5 (c) [3+7=10 marks]
(i) Let (f

n

) be a sequence of real valued functions defined on E. The sequence
(f

n

) is said to converge uniformly to a function f : E ! R if

8✏ > 0, 9N = N(✏) 2 N such that 8x 2 E, |f
n

(x)� f(x)| < ✏, 8n > N.

(ii) We will use the following criterion.
Let (f

n

) be a sequence of real-valued functions defined on a set E, that converges
pointwise to f : E ! R. Set

M

n

= sup
x2E

|f
n

(x)� f(x)|.

Then f

n

◆ f if and only if M
n

! 0 as n ! 1.

Observe that for all x 2 R we have that

� 1

n

 sinn2
x

n

 1

n

.

It follows that f

n

(x) ! 0 for all x 2 R. Hence the sequence (f
n

) converges
pointwise to the zero function, f , on R.
We also have that

M

n

= sup
x2R

|f
n

(x)� f(x)| = sup
x2R

|sinn
2
x

n

| = 1

n

.

Since lim
n!1

M

n

= 0 we conclude that the sequence (f
n

) converges uniformly to the

zero function, f , on R. ⇤
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