TAXES, TARGETS, AND THE SOCIAL COST OF CARBON

Robert S. Pindyck

Massachusetts Institute of Technology

May 2016

Robert Pindyck (MIT)

TAXES, TARGETS, AND THE SCC

May 2016 1 / 28

• The Theorem: If property rights are well specified (regardless how) and parties can bargain costlessly, problem of externalities will take care of itself. Resulting outcome will be efficient.

- The Theorem: If property rights are well specified (regardless how) and parties can bargain costlessly, problem of externalities will take care of itself. Resulting outcome will be efficient.
- Any relevance to climate change?

- The Theorem: If property rights are well specified (regardless how) and parties can bargain costlessly, problem of externalities will take care of itself. Resulting outcome will be efficient.
- Any relevance to climate change?
- International climate negotiations: the Theorem at work.

- The Theorem: If property rights are well specified (regardless how) and parties can bargain costlessly, problem of externalities will take care of itself. Resulting outcome will be efficient.
- Any relevance to climate change?
- International climate negotiations: the Theorem at work.
 - Bargaining between polluters in the aggregate and those harmed by pollution in the aggregate. Result: agreement on temperature target (2°C) and total emission reduction.

- The Theorem: If property rights are well specified (regardless how) and parties can bargain costlessly, problem of externalities will take care of itself. Resulting outcome will be efficient.
- Any relevance to climate change?
- International climate negotiations: the Theorem at work.
 - Bargaining between polluters in the aggregate and those harmed by pollution in the aggregate. Result: agreement on temperature target (2°C) and total emission reduction.
 - And then countries (smaller aggregations) bargain over their own emission reductions.

- The Theorem: If property rights are well specified (regardless how) and parties can bargain costlessly, problem of externalities will take care of itself. Resulting outcome will be efficient.
- Any relevance to climate change?
- International climate negotiations: the Theorem at work.
 - Bargaining between polluters in the aggregate and those harmed by pollution in the aggregate. Result: agreement on temperature target (2°C) and total emission reduction.
 - And then countries (smaller aggregations) bargain over their own emission reductions.
 - Like textbook examples of Coase Theorem, country negotiations can involve monetary payoffs from rich countries to poor (and to those most vulnerable to climate change).

- The Theorem: If property rights are well specified (regardless how) and parties can bargain costlessly, problem of externalities will take care of itself. Resulting outcome will be efficient.
- Any relevance to climate change?
- International climate negotiations: the Theorem at work.
 - Bargaining between polluters in the aggregate and those harmed by pollution in the aggregate. Result: agreement on temperature target (2°C) and total emission reduction.
 - And then countries (smaller aggregations) bargain over their own emission reductions.
 - Like textbook examples of Coase Theorem, country negotiations can involve monetary payoffs from rich countries to poor (and to those most vulnerable to climate change).
- But is bargaining over country-by-country emission reductions the best we can do? Would agreeing a carbon tax be better?

• Focus on emission reductions creates problems.

- Focus on emission reductions creates problems.
 - Must a poor country reduce its emissions as much as a rich one?

- Focus on emission reductions creates problems.
 - Must a poor country reduce its emissions as much as a rich one?
 - Must a country (rich or poor) with very low per capita emissions reduce future emissions as much as a country with high per capital emissions?

- Focus on emission reductions creates problems.
 - Must a poor country reduce its emissions as much as a rich one?
 - Must a country (rich or poor) with very low per capita emissions reduce future emissions as much as a country with high per capital emissions?
 - What should be the *overall* target for emission reductions, given uncertainty over timing and potential magnitude of climate change impacts?

- Focus on emission reductions creates problems.
 - Must a poor country reduce its emissions as much as a rich one?
 - Must a country (rich or poor) with very low per capita emissions reduce future emissions as much as a country with high per capital emissions?
 - What should be the *overall* target for emission reductions, given uncertainty over timing and potential magnitude of climate change impacts?
- No consensus answers, so climate negotiations (including Paris in December 2015) have had limited success.

- Focus on emission reductions creates problems.
 - Must a poor country reduce its emissions as much as a rich one?
 - Must a country (rich or poor) with very low per capita emissions reduce future emissions as much as a country with high per capital emissions?
 - What should be the *overall* target for emission reductions, given uncertainty over timing and potential magnitude of climate change impacts?
- No consensus answers, so climate negotiations (including Paris in December 2015) have had limited success.
- Approach to pollution externalities generally preferred by economists: Estimate social (external) cost of pollutant and impose a corresponding tax. In this case, estimate the SCC.

• Suppose we could arrive at consensus estimate of the (worldwide) SCC. Implies carbon tax to apply to *all* countries.

- Suppose we could arrive at consensus estimate of the (worldwide) SCC. Implies carbon tax to apply to *all* countries.
- As argued by Weitzman and others, "harmonized" carbon tax is a superior policy instrument — can better facilitate an international agreement. Why?

- Suppose we could arrive at consensus estimate of the (worldwide) SCC. Implies carbon tax to apply to *all* countries.
- As argued by Weitzman and others, "harmonized" carbon tax is a superior policy instrument — can better facilitate an international agreement. Why?
 - Agree on a single number the size of the tax as opposed to emission reductions for each country.

- Suppose we could arrive at consensus estimate of the (worldwide) SCC. Implies carbon tax to apply to *all* countries.
- As argued by Weitzman and others, "harmonized" carbon tax is a superior policy instrument — can better facilitate an international agreement. Why?
 - Agree on a single number the size of the tax as opposed to emission reductions for each country.
 - Easier for countries with different interests, incomes, etc., to agree to a single number as opposed to a large set of numbers.

- Suppose we could arrive at consensus estimate of the (worldwide) SCC. Implies carbon tax to apply to *all* countries.
- As argued by Weitzman and others, "harmonized" carbon tax is a superior policy instrument — can better facilitate an international agreement. Why?
 - Agree on a single number the size of the tax as opposed to emission reductions for each country.
 - Easier for countries with different interests, incomes, etc., to agree to a single number as opposed to a large set of numbers.
 - Eliminate free rider incentive inherent in country-by-country emission reductions.

- Suppose we could arrive at consensus estimate of the (worldwide) SCC. Implies carbon tax to apply to *all* countries.
- As argued by Weitzman and others, "harmonized" carbon tax is a superior policy instrument — can better facilitate an international agreement. Why?
 - Agree on a single number the size of the tax as opposed to emission reductions for each country.
 - Easier for countries with different interests, incomes, etc., to agree to a single number as opposed to a large set of numbers.
 - Eliminate free rider incentive inherent in country-by-country emission reductions.
 - Easier to monitor each country's compliance.

- Suppose we could arrive at consensus estimate of the (worldwide) SCC. Implies carbon tax to apply to *all* countries.
- As argued by Weitzman and others, "harmonized" carbon tax is a superior policy instrument — can better facilitate an international agreement. Why?
 - Agree on a single number the size of the tax as opposed to emission reductions for each country.
 - Easier for countries with different interests, incomes, etc., to agree to a single number as opposed to a large set of numbers.
 - Eliminate free rider incentive inherent in country-by-country emission reductions.
 - Easier to monitor each country's compliance.
 - Politically attractive: tax collected by the government of each country, and could be spent in any way that government wants.

- Suppose we could arrive at consensus estimate of the (worldwide) SCC. Implies carbon tax to apply to *all* countries.
- As argued by Weitzman and others, "harmonized" carbon tax is a superior policy instrument — can better facilitate an international agreement. Why?
 - Agree on a single number the size of the tax as opposed to emission reductions for each country.
 - Easier for countries with different interests, incomes, etc., to agree to a single number as opposed to a large set of numbers.
 - Eliminate free rider incentive inherent in country-by-country emission reductions.
 - Easier to monitor each country's compliance.
 - Politically attractive: tax collected by the government of each country, and could be spent in any way that government wants.
 - Can be flexible. Need not prevent monetary transfers or other forms of side payments.

Robert Pindyck (MIT)

TAXES, TARGETS, AND THE SCC

• Whether carbon tax or *equivalent* reduction in total worldwide emissions, need a consensus estimate of the SCC.

- Whether carbon tax or *equivalent* reduction in total worldwide emissions, need a consensus estimate of the SCC.
- So far impossible to obtain a consensus. Estimates of SCC range from \$11/mt (Nordhaus) to well over \$200/mt (Stern).

- Whether carbon tax or *equivalent* reduction in total worldwide emissions, need a consensus estimate of the SCC.
- So far impossible to obtain a consensus. Estimates of SCC range from \$11/mt (Nordhaus) to well over \$200/mt (Stern).
- We have almost no idea as to the magnitude of the SCC.

- Whether carbon tax or *equivalent* reduction in total worldwide emissions, need a consensus estimate of the SCC.
- So far impossible to obtain a consensus. Estimates of SCC range from \$11/mt (Nordhaus) to well over \$200/mt (Stern).
- We have almost no idea as to the magnitude of the SCC.
- Result: shift of climate negotiations to intermediate targets:

- Whether carbon tax or *equivalent* reduction in total worldwide emissions, need a consensus estimate of the SCC.
- So far impossible to obtain a consensus. Estimates of SCC range from \$11/mt (Nordhaus) to well over \$200/mt (Stern).
- We have almost no idea as to the magnitude of the SCC.
- Result: shift of climate negotiations to *intermediate targets*:
 - Limit end-of-century temperature increase to 2° C, on grounds that $\Delta T > 2^{\circ}$ C would be catastrophic.

- Whether carbon tax or *equivalent* reduction in total worldwide emissions, need a consensus estimate of the SCC.
- So far impossible to obtain a consensus. Estimates of SCC range from \$11/mt (Nordhaus) to well over \$200/mt (Stern).
- We have almost no idea as to the magnitude of the SCC.
- Result: shift of climate negotiations to *intermediate targets*:
 - Limit end-of-century temperature increase to 2° C, on grounds that $\Delta T > 2^{\circ}$ C would be catastrophic.
 - 2 Limit of 2° C translated into limits on CO₂ concentrations.

- Whether carbon tax or *equivalent* reduction in total worldwide emissions, need a consensus estimate of the SCC.
- So far impossible to obtain a consensus. Estimates of SCC range from \$11/mt (Nordhaus) to well over \$200/mt (Stern).
- We have almost no idea as to the magnitude of the SCC.
- Result: shift of climate negotiations to *intermediate targets*:
 - Limit end-of-century temperature increase to 2° C, on grounds that $\Delta T > 2^{\circ}$ C would be catastrophic.
 - 2 Limit of 2° C translated into limits on CO₂ concentrations.
 - These are translated into total emission reductions.

- Whether carbon tax or *equivalent* reduction in total worldwide emissions, need a consensus estimate of the SCC.
- So far impossible to obtain a consensus. Estimates of SCC range from \$11/mt (Nordhaus) to well over \$200/mt (Stern).
- We have almost no idea as to the magnitude of the SCC.
- Result: shift of climate negotiations to *intermediate targets*:
 - Limit end-of-century temperature increase to 2° C, on grounds that $\Delta T > 2^{\circ}$ C would be catastrophic.
 - 2 Limit of 2° C translated into limits on CO₂ concentrations.
 - These are translated into total emission reductions.
- Limit on ΔT replaces SCC with arbitrary target. No economic justification, no evidence that $\Delta T > 2^{\circ}$ C would be catastrophic.

- Whether carbon tax or *equivalent* reduction in total worldwide emissions, need a consensus estimate of the SCC.
- So far impossible to obtain a consensus. Estimates of SCC range from \$11/mt (Nordhaus) to well over \$200/mt (Stern).
- We have almost no idea as to the magnitude of the SCC.
- Result: shift of climate negotiations to *intermediate targets*:
 - Limit end-of-century temperature increase to 2° C, on grounds that $\Delta T > 2^{\circ}$ C would be catastrophic.
 - 2 Limit of 2° C translated into limits on CO₂ concentrations.
 - These are translated into total emission reductions.
- Limit on ΔT replaces SCC with arbitrary target. No economic justification, no evidence that $\Delta T > 2^{\circ}$ C would be catastrophic.
- To understand shift to a temperature target, must ask why we cannot agree on SCC.

Robert Pindyck (MIT)

• Even with no uncertainty, long time horizon creates extreme sensitivity to discount rate, over which there is no agreement.

- Even with no uncertainty, long time horizon creates extreme sensitivity to discount rate, over which there is no agreement.
- Very large uncertainties, some of which we cannot even characterize. The more important ones:

- Even with no uncertainty, long time horizon creates extreme sensitivity to discount rate, over which there is no agreement.
- Very large uncertainties, some of which we cannot even characterize. The more important ones:
 - Extent of warming under current and future GHG emissions.

- Even with no uncertainty, long time horizon creates extreme sensitivity to discount rate, over which there is no agreement.
- Very large uncertainties, some of which we cannot even characterize. The more important ones:
 - Extent of warming under current and future GHG emissions.
 - Economic impact of any climate change that might occur especially given the possibility of adaptation.

- Even with no uncertainty, long time horizon creates extreme sensitivity to discount rate, over which there is no agreement.
- Very large uncertainties, some of which we cannot even characterize. The more important ones:
 - Extent of warming under current and future GHG emissions.
 - Economic impact of any climate change that might occur especially given the possibility of adaptation.
 - We simply don't know how worse off world would be if by end of the century ΔT were 2°C or even 5°C. We may never know.
Why So Difficult to Estimate The SCC?

- Even with no uncertainty, long time horizon creates extreme sensitivity to discount rate, over which there is no agreement.
- Very large uncertainties, some of which we cannot even characterize. The more important ones:
 - Extent of warming under current and future GHG emissions.
 - Economic impact of any climate change that might occur especially given the possibility of adaptation.
 - We simply don't know how worse off world would be if by end of the century ΔT were 2°C or even 5°C. We may never know.
 - "The fundamental point about radical uncertainty is that if we don't know what the future might hold, we don't know, and there is no point pretending otherwise." M. King, 2016.

Why So Difficult to Estimate The SCC?

- Even with no uncertainty, long time horizon creates extreme sensitivity to discount rate, over which there is no agreement.
- Very large uncertainties, some of which we cannot even characterize. The more important ones:
 - Extent of warming under current and future GHG emissions.
 - Economic impact of any climate change that might occur especially given the possibility of adaptation.
 - We simply don't know how worse off world would be if by end of the century ΔT were 2°C or even 5°C. We may never know.
 - "The fundamental point about radical uncertainty is that if we don't know what the future might hold, we don't know, and there is no point pretending otherwise." M. King, 2016.
- Yet we have a proliferation of IAMs, which have become the standard tool for estimating the SCC. But as I have argued elsewhere, IAMs unsuitable for policy analysis.

Robert Pindyck (MIT)

• How to estimate the SCC: common approach based on IAMs:

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.
 - IAM produces new (slightly lower) path for GDP.

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.
 - IAM produces new (slightly lower) path for GDP.
 - SCC = present value of reductions in GDP over time.

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.
 - IAM produces new (slightly lower) path for GDP.
 - SCC = present value of reductions in GDP over time.
- Problem: IAMs inherently flawed. Not suited for this job.

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.
 - IAM produces new (slightly lower) path for GDP.
 - SCC = present value of reductions in GDP over time.
- Problem: IAMs inherently flawed. Not suited for this job.
 - Relationships in IAMs largely ad hoc, no basis in theory or data.

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.
 - IAM produces new (slightly lower) path for GDP.
 - SCC = present value of reductions in GDP over time.
- Problem: IAMs inherently flawed. Not suited for this job.
 - Relationships in IAMs largely ad hoc, no basis in theory or data.
 - Can get any result we want via choice of parameters.

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.
 - IAM produces new (slightly lower) path for GDP.
 - SCC = present value of reductions in GDP over time.
- Problem: IAMs inherently flawed. Not suited for this job.
 - Relationships in IAMs largely ad hoc, no basis in theory or data.
 - Can get any result we want via choice of parameters.
 - IAM can tell us nothing about likelihood or impact of catastrophic outcome, which is key driver of SCC.

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.
 - IAM produces new (slightly lower) path for GDP.
 - SCC = present value of reductions in GDP over time.
- Problem: IAMs inherently flawed. Not suited for this job.
 - Relationships in IAMs largely ad hoc, no basis in theory or data.
 - Can get any result we want via choice of parameters.
 - IAM can tell us nothing about likelihood or impact of catastrophic outcome, which is key driver of SCC.
 - IAMs create false sense of knowledge and precision.

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.
 - IAM produces new (slightly lower) path for GDP.
 - SCC = present value of reductions in GDP over time.
- Problem: IAMs inherently flawed. Not suited for this job.
 - Relationships in IAMs largely ad hoc, no basis in theory or data.
 - Can get any result we want via choice of parameters.
 - IAM can tell us nothing about likelihood or impact of catastrophic outcome, which is key driver of SCC.
 - IAMs create false sense of knowledge and precision.
- But if we don't use IAMs to estimate SCC, what to do instead?

- How to estimate the SCC: common approach based on IAMs:
 - Start with base case path for emissions, resulting path for GDP.
 - Perturb path: increase current emissions by 1 ton.
 - IAM produces new (slightly lower) path for GDP.
 - SCC = present value of reductions in GDP over time.
- Problem: IAMs inherently flawed. Not suited for this job.
 - Relationships in IAMs largely ad hoc, no basis in theory or data.
 - Can get any result we want via choice of parameters.
 - IAM can tell us nothing about likelihood or impact of catastrophic outcome, which is key driver of SCC.
 - IAMs create false sense of knowledge and precision.
- But if we don't use IAMs to estimate SCC, what to do instead?
- Proposal: Estimate an *average* SCC using expert elicitation.

• *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:

- *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:
 - Gives today's carbon tax, assuming we are on optimal trajectory.

- *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:
 - Gives today's carbon tax, assuming we are on optimal trajectory.
 - Changes (usually rises) over time. (Think of the price of a depletable resource the unpolluted atmosphere).

- *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:
 - Gives today's carbon tax, assuming we are on optimal trajectory.
 - Changes (usually rises) over time. (Think of the price of a depletable resource the unpolluted atmosphere).
 - Very sensitive to discount rate.

- *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:
 - Gives today's carbon tax, assuming we are on optimal trajectory.
 - Changes (usually rises) over time. (Think of the price of a depletable resource the unpolluted atmosphere).
 - Very sensitive to discount rate.
 - Requires IAM or similar model.

- *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:
 - Gives today's carbon tax, assuming we are on optimal trajectory.
 - Changes (usually rises) over time. (Think of the price of a depletable resource the unpolluted atmosphere).
 - Very sensitive to discount rate.
 - Requires IAM or similar model.
- Average SCC is present value of flow of benefits from large reduction in emissions now and throughout the future, relative to total size of reduction.

- *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:
 - Gives today's carbon tax, assuming we are on optimal trajectory.
 - Changes (usually rises) over time. (Think of the price of a depletable resource the unpolluted atmosphere).
 - Very sensitive to discount rate.
 - Requires IAM or similar model.
- Average SCC is present value of flow of benefits from large reduction in emissions now and throughout the future, relative to total size of reduction.
 - Gives guidance for policy over extended period of time.

- *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:
 - Gives *today's* carbon tax, assuming we are on optimal trajectory.
 - Changes (usually rises) over time. (Think of the price of a depletable resource the unpolluted atmosphere).
 - Very sensitive to discount rate.
 - Requires IAM or similar model.
- Average SCC is present value of flow of benefits from large reduction in emissions now and throughout the future, relative to total size of reduction.
 - Gives guidance for policy over extended period of time.
 - Consistent with policy problem: to eliminate range of possible outcomes, must reduce emissions by a large amount.

- *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:
 - Gives *today's* carbon tax, assuming we are on optimal trajectory.
 - Changes (usually rises) over time. (Think of the price of a depletable resource the unpolluted atmosphere).
 - Very sensitive to discount rate.
 - Requires IAM or similar model.
- Average SCC is present value of flow of benefits from large reduction in emissions now and throughout the future, relative to total size of reduction.
 - Gives guidance for policy over extended period of time.
 - Consistent with policy problem: to eliminate range of possible outcomes, must reduce emissions by a large amount.
 - Much less sensitive to discount rate.

- *Marginal SCC* is present value of flow of benefits from one-ton reduction in today's emissions. Consistent with how we usually measure social cost of a pollutant. *But*:
 - Gives *today's* carbon tax, assuming we are on optimal trajectory.
 - Changes (usually rises) over time. (Think of the price of a depletable resource the unpolluted atmosphere).
 - Very sensitive to discount rate.
 - Requires IAM or similar model.
- Average SCC is present value of flow of benefits from large reduction in emissions now and throughout the future, relative to total size of reduction.
 - Gives guidance for policy over extended period of time.
 - Consistent with policy problem: to eliminate range of possible outcomes, must reduce emissions by a large amount.
 - Much less sensitive to discount rate.
 - Lends itself to expert elicitation.

• Basic framework can be summarized as follows:

- Basic framework can be summarized as follows:
 - Primary object of analysis is economic impact of climate change, measured by reduction in GDP (broadly defined).

- Basic framework can be summarized as follows:
 - Primary object of analysis is economic impact of climate change, measured by reduction in GDP (broadly defined).
 - I ignore the mechanisms by which CO₂ emissions can cause climate change and by which climate change can reduce GDP. Only the *outcomes* matter.

- Basic framework can be summarized as follows:
 - Primary object of analysis is economic impact of climate change, measured by reduction in GDP (broadly defined).
 - I ignore the mechanisms by which CO₂ emissions can cause climate change and by which climate change can reduce GDP. Only the *outcomes* matter.
 - I want probabilities of these outcomes. For example, what is probability that under BAU we have climate-induced reduction in GDP 50 years from now of at least 10%? At least 20%? At least 50%? Rely on expert opinion for answers.

- Basic framework can be summarized as follows:
 - Primary object of analysis is economic impact of climate change, measured by reduction in GDP (broadly defined).
 - I ignore the mechanisms by which CO₂ emissions can cause climate change and by which climate change can reduce GDP. Only the *outcomes* matter.
 - I want probabilities of these outcomes. For example, what is probability that under BAU we have climate-induced reduction in GDP 50 years from now of at least 10%? At least 20%? At least 50%? Rely on expert opinion for answers.
 - By how much would growth rate of CO₂ emissions under BAU have to be reduced to avoid extreme outcomes? Again, rely on expert opinion for answers.

- Basic framework can be summarized as follows:
 - Primary object of analysis is economic impact of climate change, measured by reduction in GDP (broadly defined).
 - I ignore the mechanisms by which CO₂ emissions can cause climate change and by which climate change can reduce GDP. Only the *outcomes* matter.
 - I want probabilities of these outcomes. For example, what is probability that under BAU we have climate-induced reduction in GDP 50 years from now of at least 10%? At least 20%? At least 50%? Rely on expert opinion for answers.
 - By how much would growth rate of CO₂ emissions under BAU have to be reduced to avoid extreme outcomes? Again, rely on expert opinion for answers.
- Note focus on extreme outcomes.

• For economists, relying on expert opinion might not seem very satisfying.

- For economists, relying on expert opinion might not seem very satisfying.
 - We build models to avoid relying on subjective opinions.

- For economists, relying on expert opinion might not seem very satisfying.
 - We build models to avoid relying on subjective opinions.
 - But inputs to IAMs (equations, parameter values) are result of expert opinion; modeler is the "expert."

- For economists, relying on expert opinion might not seem very satisfying.
 - We build models to avoid relying on subjective opinions.
 - But inputs to IAMs (equations, parameter values) are result of expert opinion; modeler is the "expert."
 - Especially true for climate change impacts theory and data provide little guidance.

- For economists, relying on expert opinion might not seem very satisfying.
 - We build models to avoid relying on subjective opinions.
 - But inputs to IAMs (equations, parameter values) are result of expert opinion; modeler is the "expert."
 - Especially true for climate change impacts theory and data provide little guidance.
- Experts will reach opinions in different ways perhaps one or more IAMs, or studies of climate change and its impact. How experts arrive at opinions is not a variable of interest. Important that experts are selected based on their established expertise.

- For economists, relying on expert opinion might not seem very satisfying.
 - We build models to avoid relying on subjective opinions.
 - But inputs to IAMs (equations, parameter values) are result of expert opinion; modeler is the "expert."
 - Especially true for climate change impacts theory and data provide little guidance.
- Experts will reach opinions in different ways perhaps one or more IAMs, or studies of climate change and its impact. How experts arrive at opinions is not a variable of interest. Important that experts are selected based on their established expertise.
- Compared to use of IAMs, this is a much simpler and transparent approach to estimating SCC.
Use of Expert Opinion

- For economists, relying on expert opinion might not seem very satisfying.
 - We build models to avoid relying on subjective opinions.
 - But inputs to IAMs (equations, parameter values) are result of expert opinion; modeler is the "expert."
 - Especially true for climate change impacts theory and data provide little guidance.
- Experts will reach opinions in different ways perhaps one or more IAMs, or studies of climate change and its impact. How experts arrive at opinions is not a variable of interest. Important that experts are selected based on their established expertise.
- Compared to use of IAMs, this is a much simpler and transparent approach to estimating SCC.
- Might claim I use a model, but model has very few moving parts, and is much more transparent than IAM-based analysis.

Robert Pindyck (MIT)

TAXES, TARGETS, AND THE SCC

Opinion of Hypothetical Expert: BAU Outcomes

HORIZON T = 50

% GDP Reduction, z	0	0.020	0.050	0.100	0.200	0.500
$\phi = -\ln(1-z)$	0	0.020	0.051	0.105	0.223	0.693
Prob	.25	.50	.10	.06	.05	.04
$1 - F(\phi)$	1	.75	.25	.15	.09	.04

HORIZON T = 150

% GDP Reduction, z	0	0.020	0.050	0.100	0.200	0.500
$\phi = -\ln(1-z)$	0	0.020	0.051	0.105	0.223	0.693
Prob	0	.22	.40	.20	.10	.08
$1 - F(\phi)$	1	1	.78	.38	.18	.08

• Work with distribution for climate-induced percentage reductions in GDP 50 years from now, *z*.

- Work with distribution for climate-induced percentage reductions in GDP 50 years from now, *z*.
- Y₀ = GDP without climate impact, and φ = − ln(1 − z). So outcome z implies GDP will be e^{-φ}Y₀. Introduce φ to fit probability distributions to "expert opinion" impact numbers.

- Work with distribution for climate-induced percentage reductions in GDP 50 years from now, *z*.
- Y₀ = GDP without climate impact, and φ = − ln(1 − z). So outcome z implies GDP will be e^{-φ}Y₀. Introduce φ to fit probability distributions to "expert opinion" impact numbers.
- Expect the impact to begin before and continue and after T:

$$\phi_t = \phi_m [1 - e^{-\beta t}] \tag{1}$$

So ϕ_t starts at 0 and approaches maximum ϕ_m at rate given by β . Want to calibrate ϕ_m and β .

- Work with distribution for climate-induced percentage reductions in GDP 50 years from now, *z*.
- Y₀ = GDP without climate impact, and φ = − ln(1 − z). So outcome z implies GDP will be e^{-φ}Y₀. Introduce φ to fit probability distributions to "expert opinion" impact numbers.
- Expect the impact to begin before and continue and after T:

$$\phi_t = \phi_m [1 - e^{-\beta t}] \tag{1}$$

So ϕ_t starts at 0 and approaches maximum ϕ_m at rate given by β . Want to calibrate ϕ_m and β .

• To get β , use average ϕ_t at T_1 and $T_2 > T_1$: $\bar{\phi}_1$ and $\bar{\phi}_2$. Using $\bar{\phi}_1$ and $\bar{\phi}_2$ from table:

$$[1 - e^{-\beta T_2}] / [1 - e^{-\beta T_1}] = \bar{\phi}_2 / \bar{\phi}_1 = 2.06$$
⁽²⁾

Solution to eqn. (2) is roughly $\beta = .01$.

• Given β , distribution for ϕ_m follows from distribution for ϕ_1 , which comes from range of expert opinions (for $T_1 = 50$):

$$\tilde{\phi}_m = \tilde{\phi}_1 / [1 - e^{-\beta T_1}] \tag{3}$$

• Given β , distribution for ϕ_m follows from distribution for ϕ_1 , which comes from range of expert opinions (for $T_1 = 50$):

$$\tilde{\phi}_m = \tilde{\phi}_1 / [1 - e^{-\beta T_1}] \tag{3}$$

• GDP begins at actual initial value Y_0 and evolves as $(1-z_t) Y_0 e^{gt} = Y_0 e^{gt-\phi_t}$. At time *t*, loss from climate-induced reductions in GDP is $z_t Y_0 e^{gt} = (1-e^{-\phi_t}) Y_0 e^{gt}$.

• Given β , distribution for ϕ_m follows from distribution for ϕ_1 , which comes from range of expert opinions (for $T_1 = 50$):

$$\tilde{\phi}_m = \tilde{\phi}_1 / [1 - e^{-\beta T_1}]$$
 (3)

- GDP begins at actual initial value Y_0 and evolves as $(1-z_t) Y_0 e^{gt} = Y_0 e^{gt-\phi_t}$. At time *t*, loss from climate-induced reductions in GDP is $z_t Y_0 e^{gt} = (1-e^{-\phi_t}) Y_0 e^{gt}$.
- Thus distribution for ϕ_1 yields distribution for climate damages in each period.

• Given β , distribution for ϕ_m follows from distribution for ϕ_1 , which comes from range of expert opinions (for $T_1 = 50$):

$$\tilde{\phi}_m = \tilde{\phi}_1 / [1 - e^{-\beta T_1}] \tag{3}$$

- GDP begins at actual initial value Y_0 and evolves as $(1-z_t)Y_0e^{gt} = Y_0e^{gt-\phi_t}$. At time *t*, loss from climate-induced reductions in GDP is $z_tY_0e^{gt} = (1-e^{-\phi_t})Y_0e^{gt}$.
- Thus distribution for ϕ_1 yields distribution for climate damages in each period.
- Benefit portion of SCC is the damages that are avoided by reducing emissions.

 Begin with abatement scenario: truncate tail of impact distribution (e.g., eliminate outcomes at T = 50 of z_T ≥ .20).

- Begin with abatement scenario: truncate tail of impact distribution (e.g., eliminate outcomes at T = 50 of z_T ≥ .20).
- B_0 = present value of expected avoided reduction in flow of GDP (in dollars).

- Begin with abatement scenario: truncate tail of impact distribution (e.g., eliminate outcomes at T = 50 of z_T ≥ .20).
- B₀ = present value of expected avoided reduction in flow of GDP (in dollars).
- ΔE = "cost" of scenario: total amount of required emission reductions (in tons of CO₂).

- Begin with abatement scenario: truncate tail of impact distribution (e.g., eliminate outcomes at T = 50 of z_T ≥ .20).
- B_0 = present value of expected avoided reduction in flow of GDP (in dollars).
- ΔE = "cost" of scenario: total amount of required emission reductions (in tons of CO₂).
- SCC = $B_0/\Delta E$ (in dollars/ton).

- Begin with abatement scenario: truncate tail of impact distribution (e.g., eliminate outcomes at T = 50 of z_T ≥ .20).
- B_0 = present value of expected avoided reduction in flow of GDP (in dollars).
- ΔE = "cost" of scenario: total amount of required emission reductions (in tons of CO₂).
- SCC = $B_0/\Delta E$ (in dollars/ton).
- So need to estimate B_0 and ΔE .

• Instantaneous percentage benefit from truncating distribution is $\mathbb{E}_0(\tilde{z}_1) - \mathbb{E}_1(\tilde{z}_1)$, where \mathbb{E}_0 is expectation under full distribution, and \mathbb{E}_1 is expectation under truncated distribution:

$$B_{0} = [\mathbb{E}_{0}(\tilde{z}_{m}) - \mathbb{E}_{1}(\tilde{z}_{m})] Y_{0} \int_{0}^{\infty} [1 - e^{-\beta t}] e^{(g-R)t} dt$$

$$= \frac{\beta Y_{0}[\mathbb{E}_{0}(\tilde{z}_{1}) - \mathbb{E}_{1}(\tilde{z}_{1})]}{(R-g)(R+\beta-g)(1-e^{-\beta T_{1}})}$$

• Instantaneous percentage benefit from truncating distribution is $\mathbb{E}_0(\tilde{z}_1) - \mathbb{E}_1(\tilde{z}_1)$, where \mathbb{E}_0 is expectation under full distribution, and \mathbb{E}_1 is expectation under truncated distribution:

$$B_{0} = [\mathbb{E}_{0}(\tilde{z}_{m}) - \mathbb{E}_{1}(\tilde{z}_{m})] Y_{0} \int_{0}^{\infty} [1 - e^{-\beta t}] e^{(g-R)t} dt$$

$$= \frac{\beta Y_{0}[\mathbb{E}_{0}(\tilde{z}_{1}) - \mathbb{E}_{1}(\tilde{z}_{1})]}{(R-g)(R+\beta-g)(1-e^{-\beta T_{1}})}$$

• Here $\beta Y_0[\mathbb{E}_0(z_1) - \mathbb{E}_1(z_1)]/(1 - e^{-\beta T_1})$ is the instantaneous flow of benefits from truncating the distribution, and dividing by $(R - g)(R + \beta - g)$ yields present value of this flow.

• What emission reduction is needed to truncate impact distribution?

- What emission reduction is needed to truncate impact distribution?
- Current emissions = E_0 , and under BAU will grow at rate m_0 .

- What emission reduction is needed to truncate impact distribution?
- Current emissions = E_0 , and under BAU will grow at rate m_0 .
- Want reduced growth rate, $m_1 < m_0$, through indefinite future that would suffice to truncate distribution.

- What emission reduction is needed to truncate impact distribution?
- Current emissions = E_0 , and under BAU will grow at rate m_0 .
- Want reduced growth rate, $m_1 < m_0$, through indefinite future that would suffice to truncate distribution.
- Get m_0 and m_1 from "expert opinion" (survey).

- What emission reduction is needed to truncate impact distribution?
- Current emissions = E_0 , and under BAU will grow at rate m_0 .
- Want reduced growth rate, $m_1 < m_0$, through indefinite future that would suffice to truncate distribution.
- Get m_0 and m_1 from "expert opinion" (survey).
- Assume real cost per ton abated is constant, so discount future emission reductions at same rate R. (Need $R > m_0$.) So

$$\Delta E = E_0 \int_0^\infty \left[e^{(m_0 - R)t} - e^{(m_1 - R)t} \right] dt$$

= $\frac{(m_0 - m_1)E_0}{(R - m_0)(R - m_1)}$ (4)

• Average SCC is $S = B_0 / \Delta E$:

$$S = \frac{\beta Y_0[\mathbb{E}_0(\tilde{z}_1) - \mathbb{E}_1(\tilde{z}_1)]/(1 - e^{-\beta T_1})}{(m_0 - m_1)E_0} \times \frac{(R - m_0)(R - m_1)}{(R - g)(R + \beta - g)}$$

• Average SCC is
$$S = B_0 / \Delta E$$
:

$$S = \frac{\beta Y_0[\mathbb{E}_0(\tilde{z}_1) - \mathbb{E}_1(\tilde{z}_1)] / (1 - e^{-\beta T_1})}{(m_0 - m_1)E_0} \times \frac{(R - m_0)(R - m_1)}{(R - g)(R + \beta - g)}$$

• First fraction is instantaneous flow of SCC; second fraction puts flow in present value terms.

• Average SCC is
$$S = B_0 / \Delta E$$
:

$$S = \frac{\beta Y_0[\mathbb{E}_0(\tilde{z}_1) - \mathbb{E}_1(\tilde{z}_1)]/(1 - e^{-\beta T_1})}{(m_0 - m_1)E_0} \times \frac{(R - m_0)(R - m_1)}{(R - g)(R + \beta - g)}$$

- First fraction is instantaneous flow of SCC; second fraction puts flow in present value terms.
- So we need the following:

• Average SCC is
$$S = B_0 / \Delta E$$
:

$$S = \frac{\beta Y_0[\mathbb{E}_0(\tilde{z}_1) - \mathbb{E}_1(\tilde{z}_1)]/(1 - e^{-\beta T_1})}{(m_0 - m_1)E_0} \times \frac{(R - m_0)(R - m_1)}{(R - g)(R + \beta - g)}$$

- First fraction is instantaneous flow of SCC; second fraction puts flow in present value terms.
- So we need the following:
 - Distribution for \tilde{z}_1 (at T_1). Gives us $\mathbb{E}_0(\tilde{z}_1) \mathbb{E}_1(\tilde{z}_1)$.

• Average SCC is
$$S = B_0 / \Delta E$$
:

$$S = \frac{\beta Y_0[\mathbb{E}_0(\tilde{z}_1) - \mathbb{E}_1(\tilde{z}_1)]/(1 - e^{-\beta T_1})}{(m_0 - m_1)E_0} \times \frac{(R - m_0)(R - m_1)}{(R - g)(R + \beta - g)}$$

- First fraction is instantaneous flow of SCC; second fraction puts flow in present value terms.
- So we need the following:
 - Distribution for \tilde{z}_1 (at T_1). Gives us $\mathbb{E}_0(\tilde{z}_1) \mathbb{E}_1(\tilde{z}_1)$.
 - $\mathbb{E}_0(\tilde{z}_2)$ (at $T_2 > T_1$), to get β .

• Average SCC is
$$S = B_0 / \Delta E$$
:

$$S = \frac{\beta Y_0[\mathbb{E}_0(\tilde{z}_1) - \mathbb{E}_1(\tilde{z}_1)]/(1 - e^{-\beta T_1})}{(m_0 - m_1)E_0} \times \frac{(R - m_0)(R - m_1)}{(R - g)(R + \beta - g)}$$

- First fraction is instantaneous flow of SCC; second fraction puts flow in present value terms.
- So we need the following:
 - Distribution for \tilde{z}_1 (at T_1). Gives us $\mathbb{E}_0(\tilde{z}_1) \mathbb{E}_1(\tilde{z}_1)$.
 - $\mathbb{E}_0(\tilde{z}_2)$ (at $T_2 > T_1$), to get β .
 - m_0 and m_1 .

• Average SCC is
$$S = B_0 / \Delta E$$
:

$$S = \frac{\beta Y_0[\mathbb{E}_0(\tilde{z}_1) - \mathbb{E}_1(\tilde{z}_1)]/(1 - e^{-\beta T_1})}{(m_0 - m_1)E_0} \times \frac{(R - m_0)(R - m_1)}{(R - g)(R + \beta - g)}$$

- First fraction is instantaneous flow of SCC; second fraction puts flow in present value terms.
- So we need the following:
 - Distribution for \tilde{z}_1 (at T_1). Gives us $\mathbb{E}_0(\tilde{z}_1) \mathbb{E}_1(\tilde{z}_1)$.
 - $\mathbb{E}_0(\tilde{z}_2)$ (at $T_2 > T_1$), to get β .
 - m_0 and m_1 .
 - Discount rate R.

• Data for 2013:

< 4 ₽ × <

.∃ >

• Data for 2013:

• World GHG (CO_2e) emissions ≈ 33 billion metric tons.

• Data for 2013:

- World GHG (CO₂e) emissions \approx 33 billion metric tons.
- Average growth rate of world GHG emissions from 1990–2013 $\approx 3\%$. For U.S. and Europe, roughly zero emission growth; almost all growth due to Asia, and likely to slow even under BAU. So set $m_0 = .02$.

• Data for 2013:

- \bullet World GHG (CO_2e) emissions \approx 33 billion metric tons.
- Average growth rate of world GHG emissions from 1990–2013 \approx 3%. For U.S. and Europe, roughly zero emission growth; almost all growth due to Asia, and likely to slow even under BAU. So set $m_0 = .02$.
- World GDP (Y_0) \approx \$75 trillion, real (per capita) growth rate g = .02. Set R = .04, and $\beta = .01$.

- Data for 2013:
 - World GHG (CO_2e) emissions ≈ 33 billion metric tons.
 - Average growth rate of world GHG emissions from 1990–2013 \approx 3%. For U.S. and Europe, roughly zero emission growth; almost all growth due to Asia, and likely to slow even under BAU. So set $m_0 = .02$.
 - World GDP $(Y_0) \approx$ \$75 trillion, real (per capita) growth rate g = .02. Set R = .04, and $\beta = .01$.
- Suppose reducing emissions growth rate to $m_1 = -.02$ would avoid the two worst outcomes, i.e., z = .20 and z = .50.

- Data for 2013:
 - World GHG (CO₂e) emissions \approx 33 billion metric tons.
 - Average growth rate of world GHG emissions from 1990–2013 \approx 3%. For U.S. and Europe, roughly zero emission growth; almost all growth due to Asia, and likely to slow even under BAU. So set $m_0 = .02$.
 - World GDP $(Y_0) \approx$ \$75 trillion, real (per capita) growth rate g = .02. Set R = .04, and $\beta = .01$.
- Suppose reducing emissions growth rate to $m_1 = -.02$ would avoid the two worst outcomes, i.e., z = .20 and z = .50.

• In top part of table, $\mathbb{E}_0(z_1) = .05$, and $\mathbb{E}_1(z_1) = .022$.

- Data for 2013:
 - World GHG (CO_2e) emissions ≈ 33 billion metric tons.
 - Average growth rate of world GHG emissions from 1990–2013 \approx 3%. For U.S. and Europe, roughly zero emission growth; almost all growth due to Asia, and likely to slow even under BAU. So set $m_0 = .02$.
 - World GDP (Y_0) \approx \$75 trillion, real (per capita) growth rate g = .02. Set R = .04, and $\beta = .01$.
- Suppose reducing emissions growth rate to $m_1 = -.02$ would avoid the two worst outcomes, i.e., z = .20 and z = .50.
 - In top part of table, $\mathbb{E}_0(z_1) = .05$, and $\mathbb{E}_1(z_1) = .022$.
 - So $B_0 = 42.36 \times Y_0(.05 .022) = 1.186 \times Y_0 = \89×10^{12} .
Numerical Example

- Data for 2013:
 - \bullet World GHG (CO_2e) emissions \approx 33 billion metric tons.
 - Average growth rate of world GHG emissions from 1990–2013 \approx 3%. For U.S. and Europe, roughly zero emission growth; almost all growth due to Asia, and likely to slow even under BAU. So set $m_0 = .02$.
 - World GDP (Y_0) \approx \$75 trillion, real (per capita) growth rate g = .02. Set R = .04, and $\beta = .01$.
- Suppose reducing emissions growth rate to $m_1 = -.02$ would avoid the two worst outcomes, i.e., z = .20 and z = .50.
 - In top part of table, $\mathbb{E}_0(z_1) = .05$, and $\mathbb{E}_1(z_1) = .022$.
 - So $B_0 = 42.36 \times Y_0(.05 .022) = 1.186 \times Y_0 = \89×10^{12} .
 - From eqn. (4), $\Delta E = 1.10 \times 10^{12}$ metric tons.

Numerical Example

- Data for 2013:
 - World GHG (CO_2e) emissions \approx 33 billion metric tons.
 - Average growth rate of world GHG emissions from 1990–2013 $\approx 3\%$. For U.S. and Europe, roughly zero emission growth; almost all growth due to Asia, and likely to slow even under BAU. So set $m_0 = .02$.
 - World GDP (Y_0) \approx \$75 trillion, real (per capita) growth rate g = .02. Set R = .04, and $\beta = .01$.
- Suppose reducing emissions growth rate to $m_1 = -.02$ would avoid the two worst outcomes, i.e., z = .20 and z = .50.
 - In top part of table, $\mathbb{E}_0(z_1) = .05$, and $\mathbb{E}_1(z_1) = .022$.
 - So $B_0 = 42.36 \times Y_0(.05 .022) = 1.186 \times Y_0 = \89×10^{12} .
 - From eqn. (4), $\Delta E = 1.10 \times 10^{12}$ metric tons.
 - Then implied SCC = $B_0/\Delta E$ = \$81 per metric ton.

Numerical Example: Dependence on R

• How does this result depend on discount rate R?

Numerical Example: Dependence on R

- How does this result depend on discount rate R?
- Must have R > g and $R > m_0 = .02$.

R	B ₀	ΔE	SCC
.025	$712 imes10^{12}$	$5.87 imes10^{12}$	\$121
.030	$267 imes10^{12}$	$2.64 imes10^{12}$	\$101
.040	$89 imes10^{12}$	$1.10 imes10^{12}$	\$81
.060	$26.7 imes10^{12}$	$0.41 imes10^{12}$	\$65

Numerical Example: Dependence on R

- How does this result depend on discount rate R?
- Must have R > g and $R > m_0 = .02$.

R	B ₀	ΔE	SCC
.025	$712 imes10^{12}$	$5.87 imes10^{12}$	\$121
.030	$267 imes10^{12}$	$2.64 imes10^{12}$	\$101
.040	$89 imes10^{12}$	$1.10 imes10^{12}$	\$81
.060	$26.7 imes10^{12}$	$0.41 imes10^{12}$	\$65

• Average SCC declines as *R* is increased, but much less sharply than marginal SCC.

• Want opinions of people with research experience and expertise in climate change and its impact.

- Want opinions of people with research experience and expertise in climate change and its impact.
- Use Web of Science to identify *highly cited* journal articles, book chapters, etc., published in past decade, in 6 WoS areas: agriculture, business and economics, environmental sciences, geology, and meterology and atmospheric sciences.

- Want opinions of people with research experience and expertise in climate change and its impact.
- Use Web of Science to identify *highly cited* journal articles, book chapters, etc., published in past decade, in 6 WoS areas: agriculture, business and economics, environmental sciences, geology, and meterology and atmospheric sciences.
- WoS search terms chosen to identify publications related to climate change and its impact.

- Want opinions of people with research experience and expertise in climate change and its impact.
- Use Web of Science to identify *highly cited* journal articles, book chapters, etc., published in past decade, in 6 WoS areas: agriculture, business and economics, environmental sciences, geology, and meterology and atmospheric sciences.
- WoS search terms chosen to identify publications related to climate change and its impact.
- Include only top 10% of publication counts in each year.

- Want opinions of people with research experience and expertise in climate change and its impact.
- Use Web of Science to identify *highly cited* journal articles, book chapters, etc., published in past decade, in 6 WoS areas: agriculture, business and economics, environmental sciences, geology, and meterology and atmospheric sciences.
- WoS search terms chosen to identify publications related to climate change and its impact.
- Include only top 10% of publication counts in each year.
 - From these highly cited publications, get list of distinct authors.

- Want opinions of people with research experience and expertise in climate change and its impact.
- Use Web of Science to identify *highly cited* journal articles, book chapters, etc., published in past decade, in 6 WoS areas: agriculture, business and economics, environmental sciences, geology, and meterology and atmospheric sciences.
- WoS search terms chosen to identify publications related to climate change and its impact.
- Include only top 10% of publication counts in each year.
 - From these highly cited publications, get list of distinct authors.
 - In some fields, many authors per paper. So narrow list of authors in each field so percentage of authors in each field match percentage of highly cited publications in that field.

- Want opinions of people with research experience and expertise in climate change and its impact.
- Use Web of Science to identify *highly cited* journal articles, book chapters, etc., published in past decade, in 6 WoS areas: agriculture, business and economics, environmental sciences, geology, and meterology and atmospheric sciences.
- WoS search terms chosen to identify publications related to climate change and its impact.
- Include only top 10% of publication counts in each year.
 - From these highly cited publications, get list of distinct authors.
 - In some fields, many authors per paper. So narrow list of authors in each field so percentage of authors in each field match percentage of highly cited publications in that field.
 - When eliminating authors, I retain those with most citations.

Web of Science Search Terms

Single Search Terms	Joint S	Search Terms		
(A)	(B)	(C)		
"climate change policy"	"ocean temperature"	"climate change"		
"social cost of carbon"	"precipitation	"climate-change"		
"climate policy"	"sea level rise"	"greenhouse gas"		
"climate-change policy"	"sea level change"	"greenhouse gases"		
"climate forcing"	"ocean acidity"	GHG		
"radiative forcing"	catastrophe	(CO2 AND emissions)		
"climate feedbacks"	catastrophic	("carbon dioxide" AND emissions)		
" climate sensitivity"	economy			
"equilibrium climate response"	economics			
"global mean surface temperature"	damages			
"carbon price"	mortality			
"carbon-price"	productivity			
"price of carbon"	risk			
"carbon tax"	"discount rate"			
"tax on carbon"	"atmospheric concentration"			
("cap-and-trade" AND carbon)	GDP			
(carbon AND quota)	"gross domestic product"			
(carbon AND trade AND cap)				

Note: Quotation marks mean phrase must appear exactly as written. Search results must include at least one term in column A *or* at least one term from *each of* columns B and C.

→ ∃ →

	(A)	(B)	(C)	(D)	(E)	(F)
Research Area	No. Pubs, Top	Distinct	No. Authors	No. Authors,	% of Highly	% of
	10% of Cites	Authors	per Pub.	2.50 per Pub.	Cited Pubs.	Authors
Agriculture	282	1506	5.34	705.6	7.3%	7.3%
Business and Economics	257	643	2.50	643.0	6.7%	6.7%
Environmental						
Sciences and Ecology	1873	8932	4.77	4686.1	48.6%	48.6%
Geology	629	3787	6.02	1573.7	16.3%	16.3%
Meteorology and						
Atmospheric Sciences	815	4919	6.04	2039.1	21.1%	21.1%
Total	3856	19,787	4.93	9647.5	100%	100%

Note: In (D), (E), (F), % of authors matched to % of highly cited publications in each area.

• **Q1**: Under BAU (i.e., no additional steps taken to reduce emissions), what is best estimate of the average growth rate of world GHG emissions over the next 50 years?

- **Q1**: Under BAU (i.e., no additional steps taken to reduce emissions), what is best estimate of the average growth rate of world GHG emissions over the next 50 years?
- **Q2**: Under BAU, what is the *most likely* climate-caused reduction in world GDP we will witness in 50 years?

- **Q1**: Under BAU (i.e., no additional steps taken to reduce emissions), what is best estimate of the average growth rate of world GHG emissions over the next 50 years?
- **Q2**: Under BAU, what is the *most likely* climate-caused reduction in world GDP we will witness in 50 years?
- Q3: Under BAU, what is the probability that 50 years from now, climate change will cause a reduction in world GDP of *at least* 2%? At least 5%? At least 10%? At least 20%? At least 50%?

- **Q1**: Under BAU (i.e., no additional steps taken to reduce emissions), what is best estimate of the average growth rate of world GHG emissions over the next 50 years?
- **Q2**: Under BAU, what is the *most likely* climate-caused reduction in world GDP we will witness in 50 years?
- **Q3**: Under BAU, what is the probability that 50 years from now, climate change will cause a reduction in world GDP of *at least* 2%? At least 5%? At least 10%? At least 20%? At least 50%?
- **Q4**: Under BAU, what is the *most likely* climate-caused reduction in world GDP we will witness in *the year 2150*?

- **Q1**: Under BAU (i.e., no additional steps taken to reduce emissions), what is best estimate of the average growth rate of world GHG emissions over the next 50 years?
- **Q2**: Under BAU, what is the *most likely* climate-caused reduction in world GDP we will witness in 50 years?
- **Q3**: Under BAU, what is the probability that 50 years from now, climate change will cause a reduction in world GDP of *at least* 2%? At least 5%? At least 10%? At least 20%? At least 50%?
- **Q4**: Under BAU, what is the *most likely* climate-caused reduction in world GDP we will witness in *the year 2150*?
- **Q5**: Return to the 50-year time horizon. What is the average annual growth rate of GHG emissions needed to prevent a climate-induced reduction of world GDP of 20% or more?

- **Q1**: Under BAU (i.e., no additional steps taken to reduce emissions), what is best estimate of the average growth rate of world GHG emissions over the next 50 years?
- **Q2**: Under BAU, what is the *most likely* climate-caused reduction in world GDP we will witness in 50 years?
- **Q3**: Under BAU, what is the probability that 50 years from now, climate change will cause a reduction in world GDP of *at least* 2%? At least 5%? At least 10%? At least 20%? At least 50%?
- **Q4**: Under BAU, what is the *most likely* climate-caused reduction in world GDP we will witness in *the year 2150*?
- **Q5**: Return to the 50-year time horizon. What is the average annual growth rate of GHG emissions needed to prevent a climate-induced reduction of world GDP of 20% or more?
- **Q6**: What discount rate should be used to evaluate future costs and benefits from GHG abatement?

Robert Pindyck (MIT)

TAXES, TARGETS, AND THE SCC

• As a preliminary test, questionnaire given to 20 economists and climate scientists; 11 responded.

- As a preliminary test, questionnaire given to 20 economists and climate scientists; 11 responded.
- Illustrates how I can estimate parameters of alternative distributions for ϕ , and range of responses we might expect from full survey.

- As a preliminary test, questionnaire given to 20 economists and climate scientists; 11 responded.
- Illustrates how I can estimate parameters of alternative distributions for ϕ , and range of responses we might expect from full survey.
- For these 11 respondents, general agreement over emissions growth rate under BAU (*m*₀), and likely impact on GDP 50 years from now (\bar{z}_1). But opinions regarding the probabilities of alternative outcomes, and likely impact in 2150, vary widely.

- As a preliminary test, questionnaire given to 20 economists and climate scientists; 11 responded.
- Illustrates how I can estimate parameters of alternative distributions for ϕ , and range of responses we might expect from full survey.
- For these 11 respondents, general agreement over emissions growth rate under BAU (m_0) , and likely impact on GDP 50 years from now (\bar{z}_1) . But opinions regarding the probabilities of alternative outcomes, and likely impact in 2150, vary widely.
- Figure shows least-squares fit of gamma, generalized Pareto, and lognormal cumulative distribution functions to the 11 responses to Question 3.

Responses from 11 Experts

Expert	Q1	Q2			Q3			Q4	Q5	Q6
	(m_0)	(\bar{z}_1)	$\geq 2\%$	\geq 5%	$\geq 10\%$	\geq 20%	\geq 50%	(\bar{z}_2)	(m_1)	(<i>R</i>)
1	.02	.04	.60	.20	.05	.01	.001	.10	0.00	.025
2	.03	.06	.59	.48	.35	.20	.04	.33	03	.0225
3	.02	.08	.90	.50	.05	.01	.00001	.33	04	.031
4	.02	.05	.80	.30	.05	.02	0.0	.15	0.00	.010
5	.02	.03	.95	.25	.06	.02	.002	.15	0.00	.025
6	.01	.04	.81	.38	.11	.02	0.0	.18	01	.0229
7	.02	.09	.90	.85	.35	.20	.10	.65	0.00	.020
8	.01	.02	.40	.15	.05	.02	.01	.10	.01	.020
9	.02	.06	.90	.70	.40	.10	.03	.15	0.00	.025
10	.01	.01	.05	.01	.005	.0005	.00001	.05	01	.020
11	.02	.04	.60	.20	.05	.02	.01	.08	01	.040
Avg.	.020	.047	.682	.365	.139	.056	.018	.21	010	.0238

Robert Pindyck (MIT)

TAXES, TARGETS, AND THE SCC

May 2016 25 / 28

Three Cumulative Distributions Fit to Responses from 11 Experts

Robert Pindyck (MIT)

TAXES, TARGETS, AND THE SCC

May 2016 26 / 28

• Generalized Pareto distribution has highest corrected R^2 (0.567), so I use that to calculate SCC.

- Generalized Pareto distribution has highest corrected R^2 (0.567), so I use that to calculate SCC.
 - Estimated parameters: $\hat{\alpha} = 29.31$, $\hat{\theta} = -1.470$, and $\hat{k} = 1.633 \times 10^5$.

- Generalized Pareto distribution has highest corrected R^2 (0.567), so I use that to calculate SCC.
 - Estimated parameters: $\hat{\alpha} = 29.31$, $\hat{\theta} = -1.470$, and $\hat{k} = 1.633 \times 10^5$.
 - Distribution holds for $\phi \ge \theta + k^{1/\alpha} = 0.036$, i.e., the estimated coefficients imply zero probability of $\phi < .036$.

- Generalized Pareto distribution has highest corrected R^2 (0.567), so I use that to calculate SCC.
 - Estimated parameters: $\hat{\alpha} = 29.31$, $\hat{\theta} = -1.470$, and $\hat{k} = 1.633 \times 10^5$.
 - Distribution holds for $\phi \ge \theta + k^{1/\alpha} = 0.036$, i.e., the estimated coefficients imply zero probability of $\phi < .036$.
 - Estimated $\hat{\alpha} = 29.31$ large, so distribution is very thin-tailed.

- Generalized Pareto distribution has highest corrected R^2 (0.567), so I use that to calculate SCC.
 - Estimated parameters: $\hat{\alpha} = 29.31$, $\hat{\theta} = -1.470$, and $\hat{k} = 1.633 \times 10^5$.
 - Distribution holds for $\phi \ge \theta + k^{1/\alpha} = 0.036$, i.e., the estimated coefficients imply zero probability of $\phi < .036$.
 - Estimated $\hat{\alpha} = 29.31$ large, so distribution is very thin-tailed.
- To get SCC, I use average opinions: $m_0 = .020$, $m_1 = -.010$, and R = .0238.

- Generalized Pareto distribution has highest corrected R^2 (0.567), so I use that to calculate SCC.
 - Estimated parameters: $\hat{\alpha} = 29.31$, $\hat{\theta} = -1.470$, and $\hat{k} = 1.633 \times 10^5$.
 - Distribution holds for $\phi \ge \theta + k^{1/\alpha} = 0.036$, i.e., the estimated coefficients imply zero probability of $\phi < .036$.
 - Estimated $\hat{\alpha} = 29.31$ large, so distribution is very thin-tailed.
- To get SCC, I use average opinions: $m_0 = .020$, $m_1 = -.010$, and R = .0238.
- Also need β , but average responses $\bar{z}_1 = .047$ and $\bar{z}_2 = .210$ imply $\beta < 0$, so I set $\beta = .005$.

- Generalized Pareto distribution has highest corrected R^2 (0.567), so I use that to calculate SCC.
 - Estimated parameters: $\hat{\alpha} = 29.31$, $\hat{\theta} = -1.470$, and $\hat{k} = 1.633 \times 10^5$.
 - Distribution holds for $\phi \ge \theta + k^{1/\alpha} = 0.036$, i.e., the estimated coefficients imply zero probability of $\phi < .036$.
 - Estimated $\hat{\alpha} = 29.31$ large, so distribution is very thin-tailed.
- To get SCC, I use average opinions: $m_0 = .020$, $m_1 = -.010$, and R = .0238.
- Also need β , but average responses $\bar{z}_1 = .047$ and $\bar{z}_2 = .210$ imply $\beta < 0$, so I set $\beta = .005$.
- These numbers, along with the estimated Pareto distribution, yield SCC = \$82.07 per metric ton.

- Generalized Pareto distribution has highest corrected R^2 (0.567), so I use that to calculate SCC.
 - Estimated parameters: $\hat{\alpha} = 29.31$, $\hat{\theta} = -1.470$, and $\hat{k} = 1.633 \times 10^5$.
 - Distribution holds for $\phi \ge \theta + k^{1/\alpha} = 0.036$, i.e., the estimated coefficients imply zero probability of $\phi < .036$.
 - Estimated $\hat{\alpha} = 29.31$ large, so distribution is very thin-tailed.
- To get SCC, I use average opinions: $m_0 = .020$, $m_1 = -.010$, and R = .0238.
- Also need β , but average responses $\bar{z}_1 = .047$ and $\bar{z}_2 = .210$ imply $\beta < 0$, so I set $\beta = .005$.
- These numbers, along with the estimated Pareto distribution, yield SCC = \$82.07 per metric ton.
- Next step: elicit opinions of several thousand experts.

Conclusions

• Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.

Conclusions

- Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.
- From $\Delta T < 2^{\circ}$ C, emission reduction targets across countries.
- Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.
- From $\Delta T < 2^{\circ}$ C, emission reduction targets across countries.
- "Committments" unclear. Harmonized carbon tax preferred policy instrument. Requires SCC.

- Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.
- From $\Delta T < 2^{\circ}$ C, emission reduction targets across countries.
- "Committments" unclear. Harmonized carbon tax preferred policy instrument. Requires SCC.
- How can we estimate the SCC if we don't use an IAM?

- Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.
- From $\Delta T < 2^{\circ}$ C, emission reduction targets across countries.
- "Committments" unclear. Harmonized carbon tax preferred policy instrument. Requires SCC.
- How can we estimate the SCC if we don't use an IAM?
- Rely on expert opinions to get probabilities of alternative climate impacts. Fit one or more distributions to those opinions.

- Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.
- From $\Delta T < 2^{\circ}$ C, emission reduction targets across countries.
- "Committments" unclear. Harmonized carbon tax preferred policy instrument. Requires SCC.
- How can we estimate the SCC if we don't use an IAM?
- Rely on expert opinions to get probabilities of alternative climate impacts. Fit one or more distributions to those opinions.
- Can then estimate the benefit, *B*₀, of eliminating extreme outcomes (GDP reduction of 20% or more).

- Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.
- From $\Delta T < 2^{\circ}$ C, emission reduction targets across countries.
- "Committments" unclear. Harmonized carbon tax preferred policy instrument. Requires SCC.
- How can we estimate the SCC if we don't use an IAM?
- Rely on expert opinions to get probabilities of alternative climate impacts. Fit one or more distributions to those opinions.
- Can then estimate the benefit, *B*₀, of eliminating extreme outcomes (GDP reduction of 20% or more).
- Also rely on expert opinions to estimate reduction in GHG emissions growth needed to truncate distribution .

- Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.
- From $\Delta T < 2^{\circ}$ C, emission reduction targets across countries.
- "Committments" unclear. Harmonized carbon tax preferred policy instrument. Requires SCC.
- How can we estimate the SCC if we don't use an IAM?
- Rely on expert opinions to get probabilities of alternative climate impacts. Fit one or more distributions to those opinions.
- Can then estimate the benefit, *B*₀, of eliminating extreme outcomes (GDP reduction of 20% or more).
- Also rely on expert opinions to estimate reduction in GHG emissions growth needed to truncate distribution .
- Implies a total (discounted) emission reduction, ΔE .

- Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.
- From $\Delta T < 2^{\circ}$ C, emission reduction targets across countries.
- "Committments" unclear. Harmonized carbon tax preferred policy instrument. Requires SCC.
- How can we estimate the SCC if we don't use an IAM?
- Rely on expert opinions to get probabilities of alternative climate impacts. Fit one or more distributions to those opinions.
- Can then estimate the benefit, *B*₀, of eliminating extreme outcomes (GDP reduction of 20% or more).
- Also rely on expert opinions to estimate reduction in GHG emissions growth needed to truncate distribution .
- Implies a total (discounted) emission reduction, ΔE .
- Average SCC is $B_0/\Delta E$.

- Has been impossible to agree on SCC, so climate negotiations shifted to (arbitrary) temperature target: $\Delta T < 2^{\circ}$ C.
- From $\Delta T < 2^{\circ}$ C, emission reduction targets across countries.
- "Committments" unclear. Harmonized carbon tax preferred policy instrument. Requires SCC.
- How can we estimate the SCC if we don't use an IAM?
- Rely on expert opinions to get probabilities of alternative climate impacts. Fit one or more distributions to those opinions.
- Can then estimate the benefit, *B*₀, of eliminating extreme outcomes (GDP reduction of 20% or more).
- Also rely on expert opinions to estimate reduction in GHG emissions growth needed to truncate distribution .
- Implies a total (discounted) emission reduction, ΔE .
- Average SCC is $B_0/\Delta E$.
- Survey is now being implemented. Stand by for results.