## Universal Basic Income and Endogenous Labor Supply

Maitreesh Ghatak, London School of Economics Xavier Jaravel, London School of Economics

January 29, 2020

#### Introduction

- A key concern about feasibility of large UBI is impact on labor supply
  - ▶ Large UBI  $\Rightarrow$  higher tax rates  $\Rightarrow$  people work less and GDP falls
- Although this point is often made qualitatively, quantitative analyses of UBI with endogenous labor supply are lacking
  - ► Existing quantitative analyses tend to focus on gross vs. net costs (e.g., Widerquist 2017) with exogenous labor supply
- Given response of labor supply to tax changes, is it possible to fund a large UBI ?
  - We examine this question in a workhorse optimal taxation model, estimated to fit empirical labor supply estimates and the key features of the U.K. current tax-transfer system and income distribution

James Mirrlees, Whose Tax Model Earned a Nobel, Dies at 82



His research on "Optimum Income Taxation," dating from the late 1960s, was peppered with arcane equations and graphs, but he maintained that much of economics is "in a way quite simple."

The New York Times

## Questions for Today

- Given response of labor supply to tax changes, is it possible to fund a large UBI (considering any incentive-compatible tax system)?
- 2 Could a large UBI be funded by taxing the highest earners (top 10% or 1%)?

Oould a large UBI be funded from a "simple" tax system (flat tax)?

## Questions for Today

• Given response of labor supply to tax changes, is it possible to fund a large UBI (considering any incentive-compatible tax system)? Yes

Could a large UBI be funded by taxing the highest earners (top 10% or 1%)? No

Oculd a large UBI be funded from a "simple" tax system (flat tax)? Yes

## Insights

- In addition to quantitative results, analysis delivers three broader qualitative insights:
  - ▶ A large UBI is feasible but it cannot be funded by top earners alone ⇒ important to build broad-based support
  - ► Key feature of tax systems that can support a large UBI is that phase-out rate at the bottom is large, which reduces work incentives at the bottom ⇒ tradeoff between large UBI and encouraging work near bottom
  - ► A large UBI is feasible; beyond utilitarianism, which **normative principles** make it desirable?

# Model and Data

#### Basics

- Let c be post-tax income, wl pre-tax income, and  $\mathcal{T}(wl)$  total taxes paid
- A UBI can be interpreted as a lump-sum transfer b
- In a tax system where taxes paid increase with income, de facto we get a negative income tax scheme:

$$y = b + wI - T(wI)$$

- Moreover, a negative T(0) can be interpreted as UBI
- In this setting with  $T^{\prime}>0$ , the tax scheme is progressive; only those above some threshold  $z^{*}$  pay more taxes than they receive in transfers, where  $z^{*}$  is defined as

$$z^* = b + z^* - T(z^*)$$

## Mirrlees 1971 Setup

Standard labor supply model: Individual maximizes

$$u(c, l)$$
 s.t.  $c = wl - T(wl)$ 

where c is consumption, I labor supply, w wage rate,  $\mathcal{T}(.)$  income tax

- Individuals differ in ability w distributed with density f(w); ability is not observed
- Govt maximizes social welfare function:

$$SWF = \int G(u(c,l))f(w)dw$$
 s.t. resource constraint 
$$\int T(wl)f(w)dw \geq E$$
 and individual FOC 
$$w(1-T')u_c + u_l = 0$$

where G(.) is increasing and concave – governs preferences for redistribution

#### Data

- How large are labor supply elasticities ?
  - $\blacktriangleright$  Large literature in labor/public economics: when wage increases by 1%, labor supply increases by 0.3%

## Elasticity of Taxable Income from 1987 Danish Reform: Kleven and Schultz 2014



#### Data

- What is the existing tax and transfer system in the U.K?
  - Use newly released data from ONS for fiscal year 2017-2018
  - ► For each household income decile, get comprehensive picture of income, benefits in cash (incl. job seeker allowance, employment allowance, incapacity benefit/support, child benefits, tax credits, housing benefit, disability allowances) and taxes (incl. income tax, employee/employer NI, council tax, VAT)
  - Also get information on total revenue that must be raised for benefits in kind (incl. education, NHS, social care, housing/rail/bus subsidies, school meals)

## Observed Tax Schedule



## Results

## Optimal Tax Schedule and Redistribution

 Start by describing the optimal tax schedule and overall redistribution with standard social preferences for redistribution (log social welfare function)

#### Results:

- Optimal redistribution takes the form of a UBI (i.e., a transfer at zero earned income)
- ► The UBI is large
- Marginal tax rates are also high, including at the bottom of the distribution







#### Robustness

- Results are similar with
  - Other preferences for redistribution
  - ▶ Other labor supply elasticities
  - Additional features such as innovation dynamics

## Other Cases: Rawlsian & Flat Tax

- Next, consider variations on the baseline model:
  - Rawlsian preferences: social planner only values redistribution to agent with zero earned income; gives upper bound on feasible UBI
  - ▶ Flat taxes: how much can be raised with a flat tax?

## Optimal Rawlsian Tax Schedule



## **UBI** Levels



## **Takeaway**

- Given empirical estimates of labor supply responses to tax changes, what level of UBI could be funded?
  - ► Find that a UBI of up to £20,000/year could be funded
  - If society wants a large UBI, it can be achieved
  - ▶ But this requires strong social preferences for redistribution toward the bottom of the income distribution is that desirable ?
- Let's zoom in and compare outcomes under existing tax schedule vs.
  Rawlsian tax schedule

## Comparison: Rawlsian vs. Observed

- Earned incomes fall from 51,000 at observed to 41,084 at optimal (-20%)
- Disposable income falls from 39,401 to 29,485 (-26%)
- But person-weighted disposable income increases by 7.31%
  - Which distributional effects drive this?





## Comparison: Flat Tax vs. Observed

- Consider equilibrium with flat tax at 45%
- Earned incomes fall from 51,000 at observed to 49,823 at optimal (-2.4%)
- Disposable income falls from 39,401 to 38,224 (-3%)
- Person-weighted disposable income increases by 7.23%





## **Takeway**

- Could a substantial UBI be funded by a "simple" tax system (rather than optimal Mirrlees schedule)?
  - ► Find that flat tax of 45% can fund a subsantial UBI while leaving GDP relatively unaffected

## Role of Top Earners

- Could a substantial UBI be funded by increasing the top tax rate to 70% but leaving tax rates below median earnings unchanged?
  - ▶ No, find that UBI would remain modest at about £6,000, even with revenue-maximizing top tax rates
  - Tax systems with a large UBI must have a high phase-out rate at the bottom
    - \* Ideally would want low-skill households to face a smaller phase-out rate at the bottom (e.g., conditional tax credits related to individual circumstances to ensure that only low-skill households get the tax credit)

## Conclusion

## Recap

- Given response of labor supply to tax changes, is it possible to fund a large UBI (considering any incentive-compatible tax system)? Yes
- Oculd a large UBI be funded from a "simple" tax system (flat tax)? Yes
- Oculd a large UBI be funded by taxing the highest earners (top 10% or 1%)? No

#### Conclusion

- Many potential pros and cons of UBI are discussed in abstract
- In our view, it is instructive to:
  - ► Take a more quantitative approach informed by estimates of empirical parameters such as the elasticity of taxable income
  - ► Take a comparative approach and compare the relative costs and benefits of any transfer schemes