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Introduction

Hidden Markov and semi-Markov models find several applications
ranging from speech recognition to biostatistics. (see e.g. Muprhy
2013)

The name can be misleading, as the latent process is not only
assumed to be Markov but also to have discrete states.

In some cases, applications lead to offline (batch) data but we are
also interested in sequential data (Chiappa 2014).
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Hidden Markov Models (HMMs)

A hidden Markov model (HMM) can be formulated as follows:

et ∼ gθ(et |st), t = 1,2, . . . ,T
st |st−1 ∼ fθ(st |st−1)

where et are the data, gθ(·) is known and fθ(st |st−1) is determined by
the transition probabilities Pij

Pij = P(st = i |st−1 = j), ∀i , j

May be also thought of as dynamic change-point model, model based
clustering or latent class model for dependent data.
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Hidden semi Markov Models (HSMMs)

Let dt denote the remaining time in the current state of st .

An alternative formulation is now given as

st |st−1,dt−1 ∼
{

δ(st−1), if dt−1 > 0
fθ(st |st−1,dt−1), if dt−1 = 0

dt |st−1,dt−1 ∼
{

δ(dt−1 − 1), if dt−1 > 0
hθ(dt |st ,dt−1), if dt−1 = 0

,

where hθ(·) is the Geometric distribution (often not a good fit).

Hidden semi Markov models (HSMMs) generalise HMMs by allowing
for different distributions than the Geometric, e.g. Negative Binomial,
Poisson etc.
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HMMs vs HSMMs
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Forward-backward algorithm

Denote e = (e1, . . . ,eT ) and similarly s, d . Then define the augmented
likelihood f (e, s,d |θ) and the integrated likelihood f (e|θ).

For HMMs it is possible to evaluate the f (e|θ) directly using the
forward-backward algorithm to provide an EM-type algorithm.

An approximate version of the forward algorithm exists for HSMMs but
it can get computationally expensive; in some cases it can get to
O(TKd2

max), where dmax is a maximum duration we can introduce.
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Data augmented scheme

In this work, we aim to provide a computational scheme working with
the augmented likelihood f (e, s,d |θ).

Looking for a Markov chain Monte Carlo (MCMC) scheme that
samples from the posterior of s,d and θ. Application in a sequential
setting is also desired.

Standard MCMC algorithms are challenging. The parameter space is
discrete, hence no derivatives, and no natural blocking schemes are
available.
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Particle filter

Let xt = (st ,dt) and assume that x0 is known. The particle filter
proceeds as follows at each time t = 1, . . . ,T , for a fixed θ:

1 Draw n independent xt samples {x (i)
t }n

i=1 with equal weights from
π(xt |xt−1), given {x (i)

t−1}n
i=1. prediction

2 Compute their weights {w (i)
t }n

i=1. This allows to calculate any
expectation wrt π(xt |e1:t). filtering

3 To avoid degeneracy, sample with replacement from {x (i)
t ,w (i)

t }n
i=1

to obtain an unweighted set {x (i)
t ,1(i)}n

i=1

We can use the particle filter to construct the following algorithms
in itself gives an online algorithm (assuming known θ),
within particle MCMC allows for offline inference on (xt , θ),
within a SMC2 for sequential inference on (xt , θ).
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Particle filter based MCMC algorithm

Developed MCMC algorithm:
Sample from the conditional posterior of {xt}T

t=1|θ using a particle
filter.
Sample from the conditional posterior of θ|{xt}T

t=1 using
Hamiltonian MCMC.

Benefits:
Allows to sample from the marginal posterior of (st ,dt)

Easy to extend to sequential versions
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SIR type models for epidemics

dSt

dt
= −βSt It

dIt
dt

= βSt It − γIt

dRt

dt
= γIt

R number:
R0 =

βS0

γ
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Modelling transmission rate β

Time varying and stochastic in nature, depends on the virus as
well as social and environmental factors.

Several approaches based on Brownian motion or Gaussian
process.

Several approaches based on change-points.

We were looking for a middle ground.
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Data
Reported cases and deaths in the UK, publicly available from gov.uk
(600 points)
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Model - ODE transmission
A more elaborate transmission model: with E and I states split into two
parts (for better approximation) and a vaccination term.

dSt

dt
= −βtSt

(I1,t+I2,t)
N − ρνt−U ,

dE1,t

dt
= βtSt

(I1,t+I2,t)
N − ϵE1,t ,

dE2,t

dt
= ϵE1,t − ϵE2,t ,

dI1,t
dt

= ϵE2,t − γI1,t ,

dI2,t
dt

= γI1,t − γI2,t ,

dRt

dt
= γI2,t + ρνt−U ,
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Model - ODE quantities

Except for βt , all the unknown quantities in the ODE of the
transmission model, e.g. ϵ, γ, ρ and the initial states were given
informative priors based on other studies

βt was modelled with several HMM and HSMM variants, i.e. Negative
Binomial or Poisson durations, with different numbers of states.
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Model - reported and model implied cases

The model for the reported cases, cr
t is defined as

cr
t ∼ Negative Binomial

(
ct , ct +

c2
t

ϕc

)
,

where ct are the model implied cases coming from the ODE.

The reported cases were adjusted for under-reporting based on a
previous study

The model implied cases ct are obtained for solving the ODE in the
time interval (t − 1, t ], hence the model has a state space
representation.
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Model - reported Covid-19 deaths

The model implied deaths dt are considered a function of the model
implied cases ct over the last 28 days, see (Flaxman et al 2020), in line
with the UK definition, as well as available estimates of the infection to
fatality ratio (ifr )

dt = ifrt ×
t−1∑

τ=max(1,t−28)

cτ ft−τ ,

The reported deaths d r
t were then modelled as

d r
t ∼ Negative BinomialAlternative

(
d i

t ,d
i
t +

d i 2
t

ϕd

)
.
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Reported cases, deaths or both?

One of the substantive questions we wanted to answer is whether
one should use the reported cases and/or reported deaths.

Reported cases are known to be problematic, including
under-reporting.

Reported deaths appear to be more reliable but still have issues
(definition, ifr estimates over different times etc).

We considered models with reported deaths only as well as
models with reported deaths and cases.
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Model choice based on prediction

We implemented a SMC2 version of the algorithm to obtain
efficiently obtain predictive distributions as data accumulate.

Focus on predicting deaths since the data are more reliable. The
predictive distribution from different models were evaluated based
on the log-score.

As mentioned earlier models with reported deaths only as well
reported deaths and cases were considered. Also models with
different duration distributions and number of states
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Model predictions
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Model choice results
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Model Output
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NB4 model estimates
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Discussion - Future directions

Flexible modelling framework for SIR-type HSMMs.

Feasible computational toolkit on a challenging MCMC problem.

Model extensions, e.g. covariate dependent durations.

Computational issues, e.g. multimodality and label switching,
especially in over-parametrised models.
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