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Background

Dynamic networks: a large body literature

Evolution analysis of network snapshots: Aggarwal and Subbian (2014),
Donnat and Holmes (2018)

Networks at different times are assumed to be conditionally independent
(on some latent processes), or independent (Pensky 2019)

Exponential family conditional distributions (Krivitsky and Handcock 2014)

Inference relying on Bayesian/computational methods (Durante et al 2016,
Matias & Miele 2017)

Asymptotic theory for independent network data (Bhattacharjee et al
2020, Enikeeva & Klopp 2021)

Our goal: Model dynamic changes, with stylized features, explicitly in a
simple manner
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Autoregressive Network Models: a basic framework

Joint work with

Binyan Jiang, HKPU Jialiang Li, NUS

Jiang, B., Li, J. and Yao, Q. (2023). Autoregressive networks. Journal of
Machine Learning Research, 24 (227), 1-69.
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Let Xt ≡ (Xt
i,j) be p× p adjacency matrix of a network on p nodes

{1, · · · , p} at time t, Xt
i,j = 0 or 1 only.

Assumption: p nodes unchanged over time, edges are indep with each
other)

Definition. For t ≥ 1,

Xt
i,j = Xt−1

i,j I(εti,j = 0) + I(εti,j = 1), (i, j) ∈ J ,

where innovations εti,j , (i, j) ∈ J and t ≥ 1, are independent, and

P (εti,j = 1) = αti,j , P (εti,j = −1) = βti,j , P (εti,j = 0) = 1− αti,j − βti,j .

For undirected networks w/o selfloops,

J = {(i, j) : 1 ≤ i < j ≤ p}, Xt
j,i ≡ Xt

i,j , Xt
i,i ≡ 0
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AR(1) networks: a Markov chain

Autoregressive version of ‘regression model’ of Chang, Kolaczyk & Yao
(2022)

P (Xt
i,j = 1|Xt−1

i,j = 0) = αti,j , P (Xt
i,j = 0|Xt−1

i,j = 1) = βti,j ,

Xt is a Markov chain:

P (Xt|Xt−1, · · · ,X0) = P (Xt|Xt−1) =
∏

(i,j)∈J

P (Xt
i,j |Xt−1

i,j )

=
∏

(i,j)∈J

(αt
i,j)

Xt
i,j(1−Xt−1

i,j )(1− αt
i,j)

(1−Xt
i,j)(1−Xt−1

i,j )(βt
i,j)

(1−Xt
i,j)X

t−1
i,j (1− βt

i,j)
Xt

i,jX
t−1
i,j .
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AR(1) networks: stationarity

{Xt, t = 0, 1, · · · } is strictly stationary if

1. αti,j ≡ αi,j and βti,j ≡ βi,j for all (i, j) ∈ J , and

2. P (X0
i,j = 1) = πi,j = 1− P (X0

i,j = 0), and πi,j =
αi,j

αi,j+βi,j
.

Then

E(Xt
i,j) =

αi,j
αi,j + βi,j

, Var(Xt
i,j) =

αi,jβi,j
(αi,j + βi,j)2

,

ρi,j(|t− s|) = Corr(Xt
i,j , X

s
i,j) = (1− αi,j − βi,j)

|t−s|.

Yule-Walker equation: ρi,j(k) = (1− αi,j − βi,j)ρi,j(k − 1).

Note. Recall model Xt
i,j = I(εti,j = 0)Xt−1

i,j + I(εti,j = 1), the Y-W equation is

ρi,j(t) = E{I(εti,j = 0)}ρi,j(t− 1).
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AR(1) networks: α-mixing

Let Fb
a = σ(Xk

i,j , a ≤ k ≤ b), and

αi,j(τ) = sup
k∈N

sup
A∈Fk

0 ,B∈F∞
k+τ ,

|P (A ∩B)− P (A)P (B)|.

Then under the stationarity,

αi,j(τ) = ρi,j(τ) = (1− αi,j − βi,j)
τ , τ ≥ 1.
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Hamming distance: DH(A,B) =
∑

i,j I(Ai,j ̸= Bi,j) for any two
matrices A = (Ai,j), B = (Bi,j) of the same size.
Let dH(|t− s|) = E{DH(Xt,Xs)}, then

dH(k) = dH(k − 1) +
∑

(i,j)∈J

2αi,jβi,j
αi,j + βi,j

(1− αi,j − βi,j)
k−1

=
∑

(i,j)∈J

2αi,jβi,j
(αi,j + βi,j)2

{1− (1− αi,j − βi,j)
k}.

Thus dH(d) increases strictly, as k increases, initially from dH(0) = 0

towards the limit dH(∞) =
∑ 2αi,jβi,j

(αi,j+βi,j)2
which is the expected Hamming

distance of the two independent networks sharing the same marginal
distribution of Xt.
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Processes with alternating ACF

Define
Xt
i,j = (1−Xt−1

i,j )I(εti,j = 0) + I(εti,j = 1).

Then for k = 0, 1, 2, · · · ,

Corr(Xt
i,j , X

t+k
i,j ) = (−1)k(1− αi,j − βi,j)

k,

and

E{DH(Xt,Xt+k)} =
∑

(i,j)∈J

2(1− αi,j)(1− βi,j)

(2− αi,j − βi,j)2
{1−(−1)k(1−αi,j−βi,j)k}.
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Maximum likelihood estimation

Since Xt
i,j , for different (i, j) ∈ J , are independent, (αi,j , βi,j), for

different (i, j), can be estimated separately.
Observations: X0,X1, · · · ,Xn.
Log-likelihood (conditional on X0):

l(αi,j , βi,j) = log(αi,j)

n∑
t=1

Xt
i,j(1−Xt−1

i,j ) + log(1− αi,j)

n∑
t=1

(1−Xt
i,j)(1−Xt−1

i,j )

+ log(βi,j)

n∑
t=1

(1−Xt
i,j)X

t−1
i,j + log(1− βi,j)

n∑
t=1

Xt
i,jX

t−1
i,j .

MLEs:

α̂i,j =

∑n
t=1X

t
i,j(1−Xt−1

i,j )∑n
t=1(1−Xt−1

i,j )
, β̂i,j =

∑n
t=1(1−Xt

i,j)X
t−1
i,j∑n

t=1X
t−1
i,j

.
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Asymptotic properties of MLE

Under conditions C1 and C2,

max
(i,j)∈J

|α̂i,j−αi,j | = Op

(√
log p

n

)
, max

(i,j)∈J
|β̂i,j−βi,j | = Op

(√
log p

n

)
,

√
n
{( α̂i,j

β̂i,j

)
−
( αi,j
βi,j

)} D−→ N
(
0,diag(σi,j , σ

⋆
i,j)
)
,

where

σi,j =
αi,j(1− αi,j)(αi,j + βi,j)

βi,j
, σ⋆

i,j =
βi,j(1− βi,j)(αi,j + βi,j)

αi,j
.

C1. There exists a constant l such that 0 < l ≤ αi,j , βi,j , αi,j + βi,j ≤ 1
holds for all (i, j) ∈ J .

C2. n, p→ ∞, and (log n)(log log n)
√

log p
n → 0.
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Model diagnostics – A permutation test

‘Residual’ ε̂ti,j is defined as the estimated value of E(εti,j |Xt
i,j , X

t−1
i,j ):

ε̂ti,j =
α̂i,j

1− β̂i,j
I(Xt

i,j = 1, Xt−1
i,j = 1)− β̂i,j

1− α̂i,j
I(Xt

i,j = 0, Xt−1
i,j = 0)

+I(Xt
i,j = 1, Xt−1

i,j = 0)− I(Xt
i,j = 0, Xt−1

i,j = 1)

for (i, j) ∈ J , t = 1, · · · , n.
To check the adequacy of the model: to test for the independence of
Êt ≡ (ε̂ti,j) for t = 1, · · · , n
Since ε̂ti,j , t = 1, · · · , n, only take 4 different values for each (i, j) ∈ J , we
adopt two-way, or three-way contingency table to test the independence of
Êt and Êt−1, or Êt, Êt−1 and Êt−2.
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Outlook

AR(p), or even ARMA?

Incorporating heterogeneity, sparsity, transitivity, homophily and other
stylized features, and dealing with networks with dependent edges.

Networks with weighted edges: matrix time series models (Tensor
decomposition): Wang, Liu and Chen (2019), Chang, He, Yang and
QY (2023).
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Two-way heterogeneity dynamic network models (TWHM)

Joint work with

Binyan Jiang Chenlei Leng Ting Yan Xinyang Yu
HKPU Warwick CCNU HKPU

Jiang, Leng, Yan, Yao and Yu (2023). A two-way heterogeneity model for
dynamic networks. arXiv:2305.12643.

Qiwei Yao (LSE) Autoregressive Networks with Stylized Features 15 / 66



TWHM: a parsimonious AR(1) & a dynamic β-model

Let Xt
i,j = I(εti,j = 0) +Xt−1

i,j I(ε
t
i,j = 1), where εti,j , (i, j) ∈ J and

t ≥ 1, are independent, and

P (εti,j = 1) =
eβi,1+βj,1

1 +
∑1

k=0 e
βi,k+βj,k

, P (εti,j = 0) =
eβi,0+βj,0

1 +
∑1

k=0 e
βi,k+βj,k

,

P (εti,j = −1) =
1

1 +
∑1

k=0 e
βi,k+βj,k

.

There are only 2p (instead of 2p2) parameters:

β0 = (β1,0, · · · , βp,0)⊤, β1 = (β1,1, · · · , βp,1)⊤.

Then

P (Xt
i,j = 1) =

eβi,0+βj,0

1 + eβi,0+βj,0
= 1− P (Xt

i,j = 1)

i.e. the (static) β-model: the larger βi,0 is, the larger node i’s degree

We call β0 = (β1,0, · · · , βp,0)⊤ static heterogeneity parameters.

Qiwei Yao (LSE) Autoregressive Networks with Stylized Features 16 / 66



Furthermore,

P (Xt
i,j = 1|Xt−1

i,j = 0) =
eβi,0+βj,0

1 +
∑1

k=0 e
βi,k+βj,k

,

P (Xt
i,j = 0|Xt−1

i,j = 1) =
1

1 +
∑1

k=0 e
βi,k+βj,k

,

i.e. the larger βi,1 is, the more likely Xt
i,j will retain the value of Xt−1

i,j for
all j.

We call β1 = (β1,1, · · · , βp,1)⊤ dynamic heterogeneity parameters.

AR(1) β-models for dynamic networks
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E(Xt
i,j) =

eβi,0+βj,0

1 + eβi,0+βj,0
, Var(Xt

i,j) =
eβi,0+βj,0

(1 + eβi,0+βj,0)2
,

ρi,j(|t− s|) ≡ Corr(Xt
i,j , X

s
i,j) =

(
eβi,1+βj,1

1 +
∑1

r=0 e
βi,r+βj,r

)|t−s|

.

We allow βi,0 → −∞ as p→ ∞, to allow edge-sparsity.

Condition (A1) below ensures that ρi,j(|t− s|) are bounded away from 1,
hence observations contain the info of dynamic changes.

Then {Xt
i,j , t ≥ 1} is α-mixing with uniformly exponential decaying rates.

(A1) The true parameters satisfy β∗i,1 −max(β∗i,0, 0) < K for any
i = 1, 2, · · · , p, where K > 0 is a constant.

Qiwei Yao (LSE) Autoregressive Networks with Stylized Features 18 / 66



Likelihood

Let θ = (β⊤
0 ,β

⊤
1 )

⊤, and

L(θ;Xn,Xn−1, · · · ,X1|X0) =
∏n
t=1 L(θ;X

t|Xt−1)

Then

l(θ) = −
1

np
logL(θ;X

n
,X

n−1
, · · · ,X

1|X0
)

= −
1

p

∑
1≤i<j≤p

log
(
1 + e

βi,0+βj,0 + e
βi,1+βj,1

)
+

1

np

∑
1≤i<j≤p

{(
βi,0 + βj,0

) n∑
t=1

X
t
i,j+

log
(
1 + e

βi,1+βj,1
) n∑

t=1

(
1 − X

t
i,j

) (
1 − X

t−1
i,j

)
+ log

(
1 + e

βi,1+βj,1−βi,0−βj,0
) n∑
t=1

X
t
i,jX

t−1
i,j

}
.

Unfortunately, MLE is no longer explicitly available, and l(θ) is not convex.

Qiwei Yao (LSE) Autoregressive Networks with Stylized Features 19 / 66



A roadmap to derive MLE for θ

1 Show l(θ) is (locally) convex in a neighbourhood of the true value θ∗

2 Let θ̂ be the local MLE in the neighbourhood specified above. Derive
the bounds for θ̂ − θ∗ in both ℓ2 and ℓ∞ norms

3 Construct a new MME which is asymptotically in the neighbourhood
specified above

4 Setting this MME as the initial value, the local MLE is obtained via a
gradient decent algorithm

Qiwei Yao (LSE) Autoregressive Networks with Stylized Features 20 / 66



A new MME for β0

Note E(Xt
i,j) =

eβi,0+βj,0

1+eβi,0+βj,0
, hence 1

n

∑n
t=1X

t
i,j =

eβi,0+βj,0

1+eβi,0+βj,0
.

1

n

n∑
t=1

p∑
j=1, j ̸=i

Xt
i,j −

p∑
j=1, j ̸=i

eβi,0+βj,0

1 + eβi,0+βj,0
= 0, i = 1, · · · , p.

Those p equations are ∂
∂βi,0

f(β0) = 0, i = 1, · · · , p, where

f(β0) =
∑

1≤i,j≤p
log{1 + eβi,0+βj,0} − n−1

p∑
i=1

{βi,0
n∑
t=1

p∑
j=1, j ̸=i

Xt
i,j}

Hence MME β̃0 is the unique minimizer of convex function f(β0)
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AR networks with dependent edges

Joint work with

Jinyuan Chang Qin Fang Eric Kolaczyk Peter MacDonald
SWUFE, Chengdu Sydney McGill McGill

Chang, Fang, Kolaczyk, MacDonald and Yao (2024). Autoregressive
networks with dependent edges. arXiv:2404.15654
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AR(m) networks with dependent edges

Consider undirected networks without selfloops (Xt
i,j ≡ Xt

j,i, X
t
i,i ≡ 0)

Conditionally on {Xs}s≤t−1, the edges {Xt
i,j}1≤i<j≤p are mutually

independent with

αt−1
i,j ≡ P

(
Xt
i,j = 1 |Xt−1

i,j = 0,Xt−1 \Xt−1
i,j ,Xt−k for k ≥ 2

)
= P

(
Xt
i,j = 1 |Xt−1

i,j = 0,Xt−1 \Xt−1
i,j ,Xt−2, . . . ,Xt−m

)
,

βt−1
i,j ≡ P

(
Xt
i,j = 0 |Xt−1

i,j = 1,Xt−1 \Xt−1
i,j ,Xt−k for k ≥ 2

)
= P

(
Xt
i,j = 0 |Xt−1

i,j = 1,Xt−1 \Xt−1
i,j ,Xt−2, . . . ,Xt−m

)
,

Hence

P
(
Xt
i,j = 1 |Xt−1, . . . ,Xt−m

)
= αt−1

i,j +Xt−1
i,j (1− αt−1

i,j − βt−1
i,j ) ≡ γt−1

i,j ,

i.e. Xt
i,j |Xt−1, . . . ,Xt−m ∼ Bernoulli(γt−1

i,j ) , 1 ≤ i < j ≤ p .
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Transitivity models

Let

αti,j = ξiξj
eaU

t−1
i,j

1 + eaU
t−1
i,j + ebV

t−1
i,j

, βti,j = ηiηj
ebV

t−1
i,j

1 + eaU
t−1
i,j + ebV

t−1
i,j

,

where U t−1
i,j =

∑
kX

t−1
i,k X

t−1
j,k is no. of common friends of nodes i and j

at time t− 1 — used by Facebook and LinkedIn,

V t−1
i,j =

∑
k{X

t−1
i,k (1−Xt−1

j,k ) + (1−Xt−1
i,k )Xt−1

j,k }/2 is a distance measure
bwt nodes i and j,

ξi, ηi, a and b are non-negative parameters.
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Density-dependent models

αt−1
i,j =

ξiξjϑ
t−1
i,j

1 + ϑt−1
i,j +ϖt−1

i,j

, βt−1
i,j =

ηiηjϖ
t−1
i,j

1 + ϑt−1
i,j +ϖt−1

i,j

where ϑt−1
i,j = exp{a0Dt−1

−i,−j + a1(D
t−1
i +Dt−1

j )},

ϖt−1
i,j = exp{b0(1−Dt−1

−i,−j) + b1(2−Dt−1
i −Dt−1

j )} , and

Dt−1
−i,−j =

1

(p− 2)(p− 3)

∑
k,ℓ: k,ℓ̸=i,j, k ̸=ℓ

Xt−1
k,ℓ , Dt−1

i =
1

p− 1

∑
ℓ: ℓ ̸=i

Xt−1
i,ℓ .

Assume ai, bi > 0. The propensity to form new edge between nodes i and
j at time t is positively impacted by densities Dt−1

−i,−j , D
t−1
i and Dt−1

j ,

The propensity to dissolve an existing edge between nodes i and j at time
t is negatively impacted by those three densities.
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Persistence models

αt−1
i,j =θiθj exp[−1− a{(1−Xt−2

i,j ) + (1−Xt−2
i,j )(1−Xt−3

i,j )}],

βt−1
i,j =ηiηj exp{−1− b(Xt−2

i,j +Xt−2
i,j X

t−3
i,j )}.

This is AR(3) model with parameters a, b, θi, ηi > 0.

Hence if an edge status between two nodes are unchanged for a time
period of 2 or 3, the probability for it remaining unchanged next time is
larger than that otherwise.

The persistent connectivity or non-connectivity is widely observed in, for
example, brain networks, gene connections and social networks.

Qiwei Yao (LSE) Autoregressive Networks with Stylized Features 26 / 66



Relationship to temporal exponential random graph models

A TERGM with conditional independent edges (given the past
networks) (Hanneck et al 2010) is the AR(m) network model with

αt−1
i,j =

eϕ(θ)
⊤fij(Xt−1\Xt−1

ij ,Xt−2,...,Xt−m)

1 + eϕ(θ)
⊤fij(Xt−1\Xt−1

ij ,Xt−2,...,Xt−m)
,

βt−1
i,j =

eψ(θ)
⊤gij(Xt−1\Xt−1

ij ,Xt−2,...,Xt−m)

1 + eψ(θ)
⊤gij(Xt−1\Xt−1

ij ,Xt−2,...,Xt−m)
.

A separable TERGM with conditional independent edges (given the
past networks) (Krivitsky & Handcock 2014) is the AR(m) network
model for which αt−1

i,j and βt−1
i,j are defined as above but with ϕ(θ)

and ψ(θ) replaced, respectively, by ϕ(θα) and ψ(θβ).
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Stationarity

A general setting:

αt−1
i,j = fi,j(Xt−1 \Xt−1

i,j ,Xt−2, . . . ,Xt−m;θ0) ,

βt−1
i,j = gi,j(Xt−1 \Xt−1

i,j ,Xt−2, . . . ,Xt−m;θ0) ,

where fi,j ’s and gi,j ’s are known functions.

When m = 1 and fi,j , gi,j ∈ (0, 1) (non-sparse networks), {Xt}t≥1 is an
irreducible homogeneous Markov chain with 2p(p−1)/2 states. Hence for
any fixed p, {Xt}t≥1 is strictly stationary and ergodic.

The sample means of some summary statistics of Xt may converge faster
that the sample mean of Xt for any fixed p.

When p diverges together with n, the sample means may no longer
converge even when Xt is stationary.

Stationarity is not an asymptotic property but ergodicity is.
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Technical challenges

Edges are no longer independent

Number of (local) parameters may be of the size of network p

A silver lining: Based on conditional independence, a martingale difference
structure can be constructed, which paves the way for the asymptotic
analysis of the statistical inference.

The limiting distributions of MLEs are not normal in general, and they
reduce to normal when the underlying process satisfies some mixing
conditions.
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Local and global parameters

Put γt−1
i,j (θ) = αt−1

i,j (θ) +Xt−1
i,j

{
1− αt−1

i,j (θ)− βt−1
i,j (θ)

}
,

where θ = (θ1, · · · , θq). Write γt−1
i,j = γt−1

i,j (θ0), and θ0 is the true value.

Let

G =
{
l ∈ [q] : γt−1

i,j (θ) involves θl for all 1 ≤ i < j ≤ p and t ∈ [n] \ [m]
}

θG : global parameters

θGc : local parameters

In all the 3 models, ξi, ηi are local parameters, all other parameters are
global.

Note. θG and θGc need to be treated differently, their estimators may
entertain different convergence rates.

Assume |G| is finite and fixed (when n, p→ ∞).
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Log likelihood, and martingale differences

Let Ft = σ(X1, · · · ,Xt). For any l ∈ [q], put

Sl =
{
(i, j) : 1 ≤ i < j ≤ p and γt−1

i,j (θ) involves θl for any t ∈ [n]\ [m]
}
,

ℓ̂(l)n,p(θ) =
1

(n−m)|Sl|

n∑
t=m+1

∑
(i,j)∈Sl

[
log{1− γt−1

i,j (θ)}+Xt
i,j log

{
γt−1
i,j (θ)

1− γt−1
i,j (θ)

}]
,

ℓ(l)n,p(θ) =
1

(n−m)|Sl|

n∑
t=m+1

∑
(i,j)∈Sl

EFt−1

[
log{1−γt−1

i,j (θ)}+Xt
i,j log

{
γt−1
i,j (θ)

1− γt−1
i,j (θ)

}]
.

Then ℓ̂
(l)
n,p(θ) is a part of log-likelihood involving θl, and

ℓ̂
(l)
n,p(θ)− ℓ

(l)
n,p(θ) ≡ 1

n−m
∑n

t=m+1Mt

where {Mt} is a sequence of martingale differences.

Qiwei Yao (LSE) Autoregressive Networks with Stylized Features 31 / 66



Real data analysis: Email interactions

The email interactions in a medium-sized Polish manufacturing company
in January – September 2010 (Michalski et al., 2014)

Consider p = 106 of the most active participants out of an original 167
employees

n = 39 represents 39 weeks, and Xt
i,j = 1 if participants i and j

exchanged at least one email during Week t.

To gain some insight, we first present some preliminary summaries of the
data.
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Edge density
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2
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∑
1≤i<j≤pX

t
i,j against t.

A change-point at t = 14: Period 1 – first 13 points, Period 2 – last 26
points
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Densities of newly formed edges, and newly dissolved edges
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Plot of percentage of grown D1,t = 2
p(p−1)

∑
1≤i<j≤p(1 − Xt−1

i,j )Xt
i,j and dissolved

D0,t = 2
p(p−1)

∑
1≤i<j≤p Xt−1

i,j (1 − Xt
i,j) against t.

As D̄1,· ≈ D̄2,· ≈ 0.04, the relative frequency to grow new edge is about 5%,
and that to dissolve existing edge is about 45%.
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Empirical evidence for transitivity effects

Recall the transitivity model

αt
i,j = ξiξj

eaU
t−1
i,j

1 + eaU
t−1
i,j + ebV

t−1
i,j

, βt
i,j = ηiηj

ebV
t−1
i,j

1 + eaU
t−1
i,j + ebV

t−1
i,j

,

where U t
i,j =

∑
k ̸=i,j X

t
i,kX

t
j,k, V

t
i,j =

∑
k ̸=i,j{X

t
i,k(1−Xt

j,k) + (1−Xt
i,k)X

t
j,k}.

Let

Uℓ =
{
(i, j, t) : 1 ≤ i < j ≤ p , t ∈ [n] \ {1} , Xt−1

i,j = 0 , U t−1
i,j = ℓ

}
,

Vℓ =
{
(i, j, t) : 1 ≤ i < j ≤ p , t ∈ [n] \ {1} , Xt−1

i,j = 1 , V t−1
i,j = ℓ

}
,

U1
ℓ =

{
(i, j, t) ∈ Uℓ, X

t
i,j = 1

}
, V0

ℓ =
{
(i, j, t) ∈ Vℓ, X

t
i,j = 0

}
.

Transitivity: both |U1
ℓ |/|Uℓ| and |V0

ℓ |/|Vℓ| ↗, as ℓ ↗.
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Fitting for Period 1

â = 0.1273 and b̂ = 0.0916

0.0 0.5 1.0 1.5

0.0
0.5

1.0
1.5

Period 1

ξ̂i

η̂ i

ξ̂i and η̂i are negatively correlated: employees who tend to grow new edges
also tend to maintain existing edges.
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Fitting for Period 2

â = 0.2099 – stronger transitivity effect (more email activities among
mangers), and b̂ = 0.0957

0.0 0.5 1.0 1.5

0.0
0.5

1.0
1.5

Period 1

ξ̂i

η̂ i

Circles are sized and coloured according to hierarchical levels in the company: the
smallest black circles have no direct reports, while the largest purple circle is CEO.

The means of ξ̂i for managers and non-managers are, respectively, 0.68 and 0.42:
managers are more likely to grow edges. However, this increasing pattern does not
continue at higher levels.

Stronger transitivity and lower edge density: concentration of email activities among a

smaller group of employees, many of them managers.
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Comparison with other models by AIC & BIC

Global AR model:

P (Xt
i,j = 1|Xt−1

i,j = 0) = α, P (Xt
i,j = 0|Xt−1

i,j = 1) = β

Edgewise AR model:

P (Xt
i,j = 1|Xt−1

i,j = 0) = αi,j , P (Xt
i,j = 0|Xt−1

i,j = 1) = βi,j

Edgewise mean model: Xt
i,j

iid∼ Bernoulli(Pi,j)

Degree parameter mean model: Xt
i,j

iid∼ Bernoulli(νiνj)

No edge dependence in the above 4 models

No dynamic dependence in the last 2 models

No. of parameters is, respectively, 2, p(p− 1), 1
2p(p− 1) and p.

AR transitivity model has 2p+ 2 parameters.
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Period 1 Period 2
Model AIC BIC AIC BIC
Transitivity AR model 33227 35176 52548 54654
Global AR model 36309 36327 58267 58287

Edgewise AR model 42717 144102 55840 165394

Edgewise mean model 33248 83941 47133 101910

Degree parameter mean model 41730 42695 68969 70013

For Period 1, AR transitivity model achieves the lowest AIC and BIC.

For Period 2, it achieves the lowest BIC, and the 2nd lowest AIC (behind
the edgewise mean model).
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Post-sample edge forecasting

For 26 networks in Period 2, train models based on the first ntrain data for
ntrain = 10, . . . , 23.

Based on the fitted model, we make nstep-step forward prediction for
Xntrain+nstep for nstep = 1, 2, 3.

The combined results are presented in ROC curves.
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ROC curves: Sensitivity= TP
TP+FN , Specificity= TN
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ROC, nstep = 3
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The two edgewise models (with O(p2) parameters) perform about the
same, are clearly better than all the other models.

The transitivity model (with O(p) parameters) outperform the other three
models.
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