
Multiple-output composite quantile regression
via optimal transport

Tengyao Wang

London School of Economics

Statistics Research Showcase

Jun 2024



Collaborator

Xuzhi Yang

Tengyao Wang 2/19



Multiple-output linear model

▶ Data: (X1, Y1), . . . , (Xn, Yn)
iid∼ P (X,Y ) are Rp × Rd random vectors

generated from the linear model

Yi = b∗Xi + ϵi,

with b∗ ∈ Rd×p is the regression coefficient of interest, E(Xi) = 0 and the
random noise ϵi is independent of Xi.

▶ Goal: estimate b∗ given data.
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Ordinary least squares estimator

▶ OLS: Minimising the residual sum of squares:

b̂OLS := argmin
b∈Rd×p

n∑
i=1

∥Yi − bXi∥22.

Gauss–Markov: b̂OLS has minimal variance among all linear unbiased
estimators.

▶ But . . . one can do a lot better with heavy-tailed noise when we drop the
‘linear unbiased’ constraint.

▶ For instance, when d = 1 and ϵi
iid∼ Cauchy, b̂OLS has infinite variance, but

the least absolute deviation regression estimator

b̂LAD := argmin
b∈R1×p

n∑
i=1

|Yi − bXi|

is still consistent.
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Quantile regression for d = 1

▶ LAD regression is a special case of quantile regression (Koenker, 2005).
▶ When d = 1, for any fixed quantile level τ ∈ (0, 1), the quantile

regression estimator is defined as

(b̂QRτ , q̂τ ) := argmin
b∈R1×p,qτ∈R

n∑
i=1

ρτ (Yi − bXi − qτ ),

where ρτ (x) = τx+ + (1− τ)x− = x+ + (τ − 1)x is the ‘check loss’.

▶ Under regularity conditions,

√
n(b̂QRτ − b∗)

d−→ N

(
0,
τ(1− τ)

f2ϵ (q
∗
τ )

Σ−1
x

)
,

where Σx = cov(X1) and fϵ(q∗τ ) is the density of ϵ1 at its τ -quantile.
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Composite quantile regression for d = 1

▶ b̂QRτ is
√
n-consistent when ϵ1 has nonvanishing density at its τ -quantile,

though its efficiency can be arbitrarily small.
▶ The idea of composite quantile regression (Zou and Yuan, 2008) is to use

multiple quantiles: setting τk = k/(K + 1) or k = 1, . . . ,K , define

b̂CQR = argmin
b∈R1×p

min
q1<···<qK

K∑
k=1

n∑
i=1

ρτk(Yi − bXi − qk).

▶ b̂CQR has asymptotic variance at most eπ/6 ≈ 1.4 times that of OLS
estimator and can be much more efficient when noise is heavy-tailed.

Tengyao Wang 6/19



What to do when d ≥ 2?

▶ Coordinatewise (composite) quantile regression?
▶ Multivariate generalisation of the quantiles and check functions

– Projected/directional quantiles (Paindevaine and Šiman, 2011)
– Spatial quantiles (Chaudhuri, 1996)

▶ We take a different perspective — recasting the composite quantile
regression into an optimal transport problem
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A very brief introduction to OT

▶ Given p.m. P and Q on X , the squared 2-Wasserstein distanceW2
2 (P,Q)

is the minimum cost of moving mass from P into Q.
▶ When P and Q are both empirical measures of n points, this specialises to

the assignment problem.
▶ Formally, any transport is a joint distribution (coupling) π on X × X with

marginals P and Q and the optimal transport solves the optimisation

π∗ = argmin
π∈C(P,Q)

E(X,Y )∼π∥X − Y ∥2

▶ The Monge–Kantorovich duality:

min
π∈C(P,Q)

Eπ∥X − Y ∥2 = max
ϕ(x)+ψ(y)≤∥x−y∥2

EPϕ(X) + EQψ(Y ).

The dual solutions ϕ, ψ satisfies that x 7→ x2/2− ϕ(x) and
y 7→ y2/2− ψ(y) are convex functions.

Tengyao Wang 8/19



A very brief introduction to OT

▶ Given p.m. P and Q on X , the squared 2-Wasserstein distanceW2
2 (P,Q)

is the minimum cost of moving mass from P into Q.
▶ When P and Q are both empirical measures of n points, this specialises to

the assignment problem.
▶ Formally, any transport is a joint distribution (coupling) π on X × X with

marginals P and Q and the optimal transport solves the optimisation

π∗ = argmin
π∈C(P,Q)

E(X,Y )∼π∥X − Y ∥2

▶ The Monge–Kantorovich duality:

min
π∈C(P,Q)

Eπ∥X − Y ∥2 = max
ϕ(x)+ψ(y)≤∥x−y∥2

EPϕ(X) + EQψ(Y ).

The dual solutions ϕ, ψ satisfies that x 7→ x2/2− ϕ(x) and
y 7→ y2/2− ψ(y) are convex functions.

Tengyao Wang 8/19



CQR in population formula

▶ Assume infinite data and letK → ∞, then the CQR objective becomes

min
b∈R1×p

min
q∈M

E
{∫ 1

0

ρτ (Y − bX − q(τ)) dτ

}
,

whereM denotes the set of increasing functions on R.
▶ Let U ∼ Unif[0, 1] and ϕ(t) =

∫ t
0
q(τ) dτ , we can rewrite

min
q∈M

E
{∫ 1

0

ρτ (Y − bX − q(τ)) dτ

}
+

1

2
E(Y )

= min
q∈M

E
{∫ 1

0

(Y − bX − q(τ))+ dτ +

∫ 1

0

(1− τ)q(τ) dτ

}
= min
q∈M

E
{
max
t∈[0,1]

∫ t

0

(Y − bX − q(τ)) dτ +

∫ U

0

q(τ) dτ

}
= min
ϕ convex

{
E max
t∈[0,1]

(
t(Y − bX)− ϕ(t)

)
+ Eϕ(U)

}
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Multiple-output CQR via optimal transport

▶ The population formulation of CQR

b∗ = argmin
b∈R1×p

⟨⟨Y − bX,U⟩⟩W2

has an immediate generalisation to multivariate output.
▶ For any P ϵ, PU ∈ P2(Rd) ∩ Pac(Rd) and PX is not a point mass, b∗

uniquely solves the population MCQR objective:

b∗ = argmin
b∈Rd×p

L(b), where L(b) := ⟨⟨Y − bX,U⟩⟩W2
.

▶ MCQR estimator: given (X1, Y1), . . . , (Xn, Yn), draw
U1, . . . , Un ∼ Nd(0, Id), we define

b̂ = b̂MCQR ∈ argmin
b∈Rd×p

Ln(b), where Ln(b) := ⟨⟨PY−bX
n , PUn ⟩⟩W2
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Relation to Monge–Kantorovich quantiles

▶ The optimal transport coupling between PY−bX and PU induces maps F
and Q such that F (Y − bX) ∼ PU and Q(U) ∼ PY−bX .

▶ F and Q are known as the Monge–Kantorovich rank and quantile
functions of PY−bX .

▶ These are multivariate generalisations of the ranks and quantiles proposed
by Chernozhukov et al. (2017) and Hallin et al. (2021).

▶ M–K ranks and quantiles have found applications in distribution-free
nonparametric statistical inference (Ghosal and Sen, 2022)
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Computing the estimator

▶ For a fixed b, computing Ln(b) = ⟨⟨PY−bX
n , PUn ⟩⟩W2

amounts to an
assignment problem. Let A be the class of assignment matrices.

▶ WritingU = (U1, . . . , Un)
⊤,X = (X1, . . . , Xn)

⊤, Y = (Y1, . . . , Yn)
⊤, we

have
min

b∈Rd×p
Ln(b) = min

b∈Rd×p
max
A∈A

Tr
(
U⊤A(Y −Xb⊤)

)
▶ Easier to solve the dual problem:

max
A∈A

Tr(U⊤A) s.t. U⊤AX = 0,

by standard LP solvers.
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Theoretical guarantees
▶ We assume that P ϵ is has a Lebesgue density and PX is an elliptical

distribution.
▶ Polynomial-tailed noise: suppose that PX and P ϵ both have finite ℓ-th

moment (ℓ > 2), then with probability at least 1− 4
logn , the MCQR

estimator satisfies

∥b̂MCQR − b∗∥2Σ ∧ 1 ≲d,p,logn n
−1/4 + n−1/max(d,p) + n−(ℓ−2)/(2ℓ).

▶ Sub-Weibull-tailed noise: Suppose Σ−1/2X1 is (σ1, α)-sub-Weibull and
ϵ1 is (σ2, β)-sub-Weibull, i.e.

E e(∥Σ
−1X1∥/σ1)

α/2 ≤ 2 and E e(∥ϵ1∥/σ2)
β/2 ≤ 2,

and the density of ϵ1 satisfies fϵ(u) ≥ γ1e
−γ2∥u∥2

2 for ∥u∥ ≥ 1, then with
probability at least 1− 33

logn , we have

∥b̂MCQR − b∗∥2Σ ∧ 1 ≲d,logn

√
p

n
+ n−2/d.
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Proof sketch
▶ Basic inequality:

L(b̂)− L(b∗) ≤ L(b̂)− Ln(b̂) + Ln(b∗)− L(b∗).

▶ To control the LHS, we have the following inequality: for random vectors
Z ⊥⊥ ϵ in Rd with finite second moment and U ∼ Nd(0, Id), we have

⟨⟨Z + ϵ, U⟩⟩2W2
≥ ⟨⟨Z,U⟩⟩2W2

+ ⟨⟨ϵ, U⟩⟩2W2
.

▶ To control the RHS, we use bounds for distances between empirical and
population 2-Wasserstein distances (Fournier and Guillin, 2015).
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Empirical performance of MCQR estimator

▶ The noise ϵi’s generated from one of the following distributions:
(i) ϵi ∼ N (0, Id)
(ii) ϵi ∼ t2(0, Id) follows a multivariate t2 distribution
(iii) ϵi has each marginal distributed with Pareto(−2, 2, 1) and the same

copula as N (0,Σ′), where Σ′ = (0.9|i−j|)i,j ∈ Rd×d
(iv) ε follows a centered Banana-shaped distribution.

▶ We compare the average loss (matrix Mahalanobis norm) of MCQR
estimator against
– Coordinatewise CQR estimator (CoorCQR)
– Spatial quantile regression estimator (SpQR)
– OLS estimator
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Empirical performance of MCQR estimator
Gaussian noise Multivariate t2

Pareto copula Banana-shaped

Tengyao Wang 17/19



Empirical performance of MCQR estimator

▶ We also investigate the empirical performance of MCQR in the presence of
outlier contamination. Here, we consider two cases of δ-contaminated
noise, for some δ ∈ (0, 1):
(i) ϵ ∼ (1− δ)P1 + δP2; here P1 is a Pareto copula as before and P2 is a

heavier-tailed location-shifted Pareto copula with marginals
distributed as Pareto(10, 2, 10).

(ii) ε ∼ (1− ϵ)N (0, Id) + ϵN (100, Id)

Pareto contamination Gaussian contamination
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Summary

▶ CQR optimisation has a natural OT interpretation
▶ This allows a multivariate generalisation
▶ Current theoretical control is likely suboptimal
▶ Empirical performance is very promising

Main reference:
▶ Yang, X. and Wang, T. (2024) Multiple-output composite quantile regression

through an optimal transport lens. COLT 2024.
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Thank you!
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