Multiple-output composite quantile regression via optimal transport

Tengyao Wang

London School of Economics

Statistics Research Showcase

Jun 2024

990

▶ **Data**: $(X_1, Y_1), \ldots, (X_n, Y_n) \stackrel{\text{iid}}{\sim} P^{(X,Y)}$ are $\mathbb{R}^p \times \mathbb{R}^d$ random vectors generated from the linear model

$$Y_i = b^* X_i + \epsilon_i,$$

with $b^* \in \mathbb{R}^{d \times p}$ is the regression coefficient of interest, $\mathbb{E}(X_i) = 0$ and the random noise ϵ_i is independent of X_i .

Goal: estimate b^* given data.

• **OLS**: Minimising the residual sum of squares:

$$\hat{b}^{\text{OLS}} := \operatorname*{argmin}_{b \in \mathbb{R}^{d \times p}} \sum_{i=1}^{n} \|Y_i - bX_i\|_2^2.$$

Gauss–Markov: $\hat{b}^{\rm OLS}$ has minimal variance among all *linear unbiased* estimators.

• **OLS**: Minimising the residual sum of squares:

$$\hat{b}^{\text{OLS}} := \operatorname*{argmin}_{b \in \mathbb{R}^{d \times p}} \sum_{i=1}^{n} \|Y_i - bX_i\|_2^2.$$

Gauss–Markov: \hat{b}^{OLS} has minimal variance among all *linear unbiased* estimators.

- But ... one can do a lot better with heavy-tailed noise when we drop the 'linear unbiased' constraint.
- ► For instance, when d = 1 and $\epsilon_i \stackrel{\text{iid}}{\sim} \text{Cauchy}$, \hat{b}^{OLS} has infinite variance, but the least absolute deviation regression estimator

$$\hat{b}^{\text{LAD}} := \underset{b \in \mathbb{R}^{1 \times p}}{\operatorname{argmin}} \sum_{i=1}^{n} |Y_i - bX_i|$$

is still consistent.

Quantile regression for d = 1

- LAD regression is a special case of quantile regression (Koenker, 2005).
- When d = 1, for any fixed quantile level $\tau \in (0, 1)$, the **quantile** regression estimator is defined as

$$(\hat{b}^{\mathrm{QR}_{\tau}}, \hat{q}_{\tau}) := \operatorname*{argmin}_{b \in \mathbb{R}^{1 \times p}, q_{\tau} \in \mathbb{R}} \sum_{i=1}^{n} \rho_{\tau} (Y_i - bX_i - q_{\tau}),$$

where $\rho_\tau(x)=\tau x^++(1-\tau)x^-=x^++(\tau-1)x$ is the 'check loss'.

$ \rho_{\tau}(x) := x^{+} + (\tau - 1)x $	
	x
$(\tau - 1)x$	$\xrightarrow{\tau x} x$

Under regularity conditions,

$$\sqrt{n}(\hat{b}^{\mathrm{QR}_{\tau}} - b^*) \xrightarrow{\mathrm{d}} N\bigg(0, \frac{\tau(1-\tau)}{f_{\epsilon}^2(q_{\tau}^*)}\Sigma_{\mathbf{x}}^{-1}\bigg),$$

where $\Sigma_{\mathbf{x}} = \operatorname{cov}(X_1)$ and $f_{\epsilon}(q_{\tau}^*)$ is the density of ϵ_1 at its τ -quantile.

Tengyao Wang

- ▶ $\hat{b}^{QR_{\tau}}$ is \sqrt{n} -consistent when ϵ_1 has nonvanishing density at its τ -quantile, though its efficiency can be arbitrarily small.
- ► The idea of **composite quantile regression** (Zou and Yuan, 2008) is to use multiple quantiles: setting $\tau_k = k/(K+1)$ or k = 1, ..., K, define

$$\hat{b}^{\text{CQR}} = \underset{b \in \mathbb{R}^{1 \times p}}{\operatorname{argmin}} \min_{q_1 < \dots < q_K} \sum_{k=1}^K \sum_{i=1}^n \rho_{\tau_k} (Y_i - bX_i - q_k).$$

▶ \hat{b}^{CQR} has asymptotic variance at most $e\pi/6 \approx 1.4$ times that of OLS estimator and can be much more efficient when noise is heavy-tailed.

- Coordinatewise (composite) quantile regression?
- Multivariate generalisation of the quantiles and check functions
 - Projected/directional quantiles (Paindevaine and Šiman, 2011)
 - Spatial quantiles (Chaudhuri, 1996)

- Coordinatewise (composite) quantile regression?
- Multivariate generalisation of the quantiles and check functions
 - Projected/directional quantiles (Paindevaine and Šiman, 2011)
 - Spatial quantiles (Chaudhuri, 1996)
- We take a different perspective recasting the composite quantile regression into an **optimal transport** problem

A very brief introduction to OT

- ► Given p.m. *P* and *Q* on *X*, the squared **2-Wasserstein distance** $W_2^2(P,Q)$ is the minimum cost of moving mass from *P* into *Q*.
- ▶ When *P* and *Q* are both empirical measures of *n* points, this specialises to the **assignment problem**.
- Formally, any transport is a joint distribution (coupling) π on $\mathcal{X} \times \mathcal{X}$ with marginals P and Q and the optimal transport solves the optimisation

$$\pi^* = \operatorname*{argmin}_{\pi \in \mathcal{C}(P,Q)} \mathbb{E}_{(X,Y) \sim \pi} \|X - Y\|^2$$

A very brief introduction to OT

- ▶ Given p.m. P and Q on X, the squared 2-Wasserstein distance W₂²(P,Q) is the minimum cost of moving mass from P into Q.
- ▶ When *P* and *Q* are both empirical measures of *n* points, this specialises to the **assignment problem**.
- Formally, any transport is a joint distribution (coupling) π on $\mathcal{X} \times \mathcal{X}$ with marginals P and Q and the optimal transport solves the optimisation

$$\pi^* = \operatorname*{argmin}_{\pi \in \mathcal{C}(P,Q)} \mathbb{E}_{(X,Y) \sim \pi} \|X - Y\|^2$$

The Monge-Kantorovich duality:

$$\min_{\pi \in \mathcal{C}(P,Q)} \mathbb{E}_{\pi} \| X - Y \|^2 = \max_{\phi(x) + \psi(y) \le \| x - y \|^2} \mathbb{E}_P \phi(X) + \mathbb{E}_Q \psi(Y).$$

The dual solutions ϕ, ψ satisfies that $x \mapsto x^2/2 - \phi(x)$ and $y \mapsto y^2/2 - \psi(y)$ are convex functions.

Assume infinite data and let $K \to \infty$, then the CQR objective becomes

$$\min_{b \in \mathbb{R}^{1 \times p}} \min_{q \in \mathcal{M}} \mathbb{E} \bigg\{ \int_0^1 \rho_\tau (Y - bX - q(\tau)) \, d\tau \bigg\},$$

where \mathcal{M} denotes the set of increasing functions on \mathbb{R} .

Assume infinite data and let $K \to \infty$, then the CQR objective becomes

$$\min_{b \in \mathbb{R}^{1 \times p}} \min_{q \in \mathcal{M}} \mathbb{E} \bigg\{ \int_0^1 \rho_\tau (Y - bX - q(\tau)) \, d\tau \bigg\},$$

where ${\mathcal M}$ denotes the set of increasing functions on ${\mathbb R}.$

• Let $U \sim \text{Unif}[0,1]$ and $\phi(t) = \int_0^t q(\tau) \, d\tau$, we can rewrite

$$\begin{split} \min_{q \in \mathcal{M}} \mathbb{E} \left\{ \int_0^1 \rho_\tau (Y - bX - q(\tau)) \, d\tau \right\} + \frac{1}{2} \mathbb{E}(Y) \\ &= \min_{q \in \mathcal{M}} \mathbb{E} \left\{ \int_0^1 (Y - bX - q(\tau))^+ \, d\tau + \int_0^1 (1 - \tau) q(\tau) \, d\tau \right\} \\ &= \min_{q \in \mathcal{M}} \mathbb{E} \left\{ \max_{t \in [0, 1]} \int_0^t (Y - bX - q(\tau)) \, d\tau + \int_0^U q(\tau) \, d\tau \right\} \\ &= \min_{\phi \text{ convex}} \left\{ \mathbb{E} \max_{t \in [0, 1]} \left(t(Y - bX) - \phi(t) \right) + \mathbb{E} \phi(U) \right\} \end{split}$$

THE LONDON SCHOOL OF ECONOMICS AND POLITICAL SCIENCE

Assume infinite data and let $K \to \infty$, then the CQR objective becomes

$$\min_{b \in \mathbb{R}^{1 \times p}} \min_{q \in \mathcal{M}} \mathbb{E} \bigg\{ \int_0^1 \rho_\tau (Y - bX - q(\tau)) \, d\tau \bigg\}.$$

▶ Let $U \sim \text{Unif}[0,1]$ and $\phi(t) = \int_0^t q(\tau) \, d\tau$, we can rewrite

$$\min_{q \in \mathcal{M}} \mathbb{E} \left\{ \int_0^1 \rho_\tau (Y - bX - q(\tau)) \, d\tau \right\} + \frac{1}{2} \mathbb{E}(Y)$$
$$= \min_{\phi \text{ convex}} \left\{ \mathbb{E} \max_{t \in [0,1]} \left(t(Y - bX) - \phi(t) \right) + \mathbb{E} \phi(U) \right\}$$

▶ Assume infinite data and let $K \to \infty$, then the CQR objective becomes

$$\min_{b\in\mathbb{R}^{1\times p}}\min_{q\in\mathcal{M}}\mathbb{E}\bigg\{\int_0^1\rho_\tau(Y-bX-q(\tau))\,d\tau\bigg\}.$$

▶ Let $U \sim \text{Unif}[0,1]$ and $\phi(t) = \int_0^t q(\tau) \, d\tau$, we can rewrite

$$\begin{split} \min_{q \in \mathcal{M}} \mathbb{E} \bigg\{ \int_{0}^{1} \rho_{\tau} (Y - bX - q(\tau)) \, d\tau \bigg\} + \frac{1}{2} \mathbb{E}(Y) \\ &= \min_{\phi \text{ convex}} \bigg\{ \mathbb{E} \max_{t \in [0,1]} \big(t(Y - bX) - \phi(t) \big) + \mathbb{E} \phi(U) \bigg\} \\ \mathsf{L-F \ duality} \quad &= \min_{\phi \text{ convex}} \bigg\{ \mathbb{E} \phi^{*}(Y - bX) + \mathbb{E} \phi(U) \bigg\} \end{split}$$

Assume infinite data and let $K \to \infty$, then the CQR objective becomes

$$\min_{b\in\mathbb{R}^{1\times p}}\min_{q\in\mathcal{M}}\mathbb{E}\bigg\{\int_0^1\rho_\tau(Y-bX-q(\tau))\,d\tau\bigg\}.$$

• Let $U \sim \text{Unif}[0,1]$ and $\phi(t) = \int_0^t q(\tau) \, d\tau$, we can rewrite

$$\begin{split} \min_{q \in \mathcal{M}} \mathbb{E} \left\{ \int_{0}^{1} \rho_{\tau} (Y - bX - q(\tau)) \, d\tau \right\} + \frac{1}{2} \mathbb{E}(Y) \\ &= \min_{\phi \text{ convex}} \left\{ \mathbb{E} \max_{t \in [0,1]} \left(t(Y - bX) - \phi(t) \right) + \mathbb{E} \phi(U) \right\} \\ (\mathsf{L-F duality}) &= \min_{\phi \text{ convex}} \left\{ \mathbb{E} \phi^{*} (Y - bX) + \mathbb{E} \phi(U) \right\} \\ (\mathsf{M-K duality}) &= \frac{1}{2} \left\{ -\mathcal{W}_{2}^{2} (Y - bX, U) + \mathbb{E} (Y - bX)^{2} + \mathbb{E} U^{2} \right\} \\ &= \sup_{\pi \in \mathcal{C}(P^{Y - bX}, P^{U})} \mathbb{E} \left\langle Y - bX, U \right\rangle =: \left\langle \! \langle Y - bX, U \rangle \! \rangle_{\mathcal{W}_{2}}. \end{split}$$

Assume infinite data and let $K \to \infty$, then the CQR objective becomes

$$\min_{b\in\mathbb{R}^{1\times p}}\min_{q\in\mathcal{M}}\mathbb{E}\left\{\int_{0}^{1}\rho_{\tau}(Y-bX-q(\tau))\,d\tau\right\}.$$

• Let $U \sim \text{Unif}[0,1]$ and $\phi(t) = \int_0^t q(\tau) \, d\tau$, we can rewrite

$$\begin{split} \min_{q \in \mathcal{M}} \mathbb{E} \left\{ \int_{0}^{1} \rho_{\tau} (Y - bX - q(\tau)) \, d\tau \right\} + \frac{1}{2} \mathbb{E}(Y) \\ &= \min_{\phi \text{ convex}} \left\{ \mathbb{E} \max_{t \in [0,1]} \left(t(Y - bX) - \phi(t) \right) + \mathbb{E} \phi(U) \right\} \\ (\mathsf{L-F duality}) &= \min_{\phi \text{ convex}} \left\{ \mathbb{E} \phi^{*} (Y - bX) + \mathbb{E} \phi(U) \right\} \\ (\mathsf{M-K duality}) &= \frac{1}{2} \left\{ -\mathcal{W}_{2}^{2} (Y - bX, U) + \mathbb{E} (Y - bX)^{2} + \mathbb{E} U^{2} \right\} \\ &= \sup_{\pi \in \mathcal{C}(P^{Y - bX}, P^{U})} \mathbb{E} \left\langle Y - bX, U \right\rangle =: \langle\!\langle Y - bX, U \rangle\!\rangle_{\mathcal{W}_{2}}. \end{split}$$

The population formulation of CQR

$$b^* = \operatorname*{argmin}_{b \in \mathbb{R}^{1 \times p}} \langle\!\langle Y - bX, U \rangle\!\rangle_{\mathcal{W}_2}$$

has an immediate generalisation to multivariate output.

▶ For any $P^{\epsilon}, P^{U} \in \mathcal{P}_{2}(\mathbb{R}^{d}) \cap \mathcal{P}_{\mathrm{ac}}(\mathbb{R}^{d})$ and P^{X} is not a point mass, b^{*} uniquely solves the population MCQR objective:

$$b^* = \operatorname*{argmin}_{b \in \mathbb{R}^{d \times p}} \mathcal{L}(b), \quad \text{where } \mathcal{L}(b) := \langle\!\langle Y - bX, U \rangle\!\rangle_{\mathcal{W}_2}.$$

• MCQR estimator: given $(X_1, Y_1), \ldots, (X_n, Y_n)$, draw $U_1, \ldots, U_n \sim N_d(0, I_d)$, we define

$$\hat{b} = \hat{b}^{\mathrm{MCQR}} \in \operatorname*{argmin}_{b \in \mathbb{R}^{d \times p}} \mathcal{L}_n(b), \quad \text{where } \mathcal{L}_n(b) := \langle\!\langle P_n^{Y-bX}, P_n^U \rangle\!\rangle_{\mathcal{W}_2}$$

- ► The optimal transport coupling between P^{Y-bX} and P^U induces maps F and Q such that F(Y bX) ~ P^U and Q(U) ~ P^{Y-bX}.
- F and Q are known as the Monge-Kantorovich rank and quantile functions of P^{Y-bX} .
- These are multivariate generalisations of the ranks and quantiles proposed by Chernozhukov et al. (2017) and Hallin et al. (2021).
- M-K ranks and quantiles have found applications in distribution-free nonparametric statistical inference (Ghosal and Sen, 2022)

- For a fixed *b*, computing $\mathcal{L}_n(b) = \langle\!\langle P_n^{Y-bX}, P_n^U \rangle\!\rangle_{\mathcal{W}_2}$ amounts to an assignment problem. Let \mathcal{A} be the class of assignment matrices.
- Writing $U = (U_1, \dots, U_n)^\top$, $X = (X_1, \dots, X_n)^\top$, $Y = (Y_1, \dots, Y_n)^\top$, we have

$$\min_{b \in \mathbb{R}^{d \times p}} \mathcal{L}_n(b) = \min_{b \in \mathbb{R}^{d \times p}} \max_{A \in \mathcal{A}} \operatorname{Tr} \left(\boldsymbol{U}^\top A (\boldsymbol{Y} - \boldsymbol{X} b^\top) \right)$$

Easier to solve the dual problem:

$$\max_{A \in \mathcal{A}} \operatorname{Tr}(\boldsymbol{U}^{\top} A) \quad \text{s.t.} \ \boldsymbol{U}^{\top} A \boldsymbol{X} = 0,$$

by standard LP solvers.

Theoretical guarantees

- We assume that P^{ϵ} is has a Lebesgue density and P^X is an elliptical distribution.
- Polynomial-tailed noise: suppose that P^X and P^ε both have finite ℓ-th moment (ℓ > 2), then with probability at least 1 ⁴/_{log n}, the MCQR estimator satisfies

$$\|\hat{b}^{\mathrm{MCQR}} - b^*\|_{\Sigma}^2 \wedge 1 \lesssim_{d,p,\log n} n^{-1/4} + n^{-1/\max(d,p)} + n^{-(\ell-2)/(2\ell)}.$$

Theoretical guarantees

- We assume that P^{ϵ} is has a Lebesgue density and P^X is an elliptical distribution.
- ▶ Polynomial-tailed noise: suppose that P^X and P^ε both have finite ℓ-th moment (ℓ > 2), then with probability at least 1 ⁴/_{log n}, the MCQR estimator satisfies

$$\|\hat{b}^{\mathrm{MCQR}} - b^*\|_{\Sigma}^2 \wedge 1 \lesssim_{d,p,\log n} n^{-1/4} + n^{-1/\max(d,p)} + n^{-(\ell-2)/(2\ell)}.$$

Sub-Weibull-tailed noise: Suppose $\Sigma^{-1/2}X_1$ is (σ_1, α) -sub-Weibull and ϵ_1 is (σ_2, β) -sub-Weibull, i.e.

$$\mathbb{E}\,e^{\left(\|\Sigma^{-1}X_1\|/\sigma_1\right)^{\alpha}/2}\leq 2\quad\text{and}\quad\mathbb{E}\,e^{\left(\|\epsilon_1\|/\sigma_2\right)^{\beta}/2}\leq 2,$$

and the density of ϵ_1 satisfies $f_{\epsilon}(u) \geq \gamma_1 e^{-\gamma_2 \|u\|_2^2}$ for $\|u\| \geq 1$, then with probability at least $1 - \frac{33}{\log n}$, we have

$$\|\hat{b}^{\mathrm{MCQR}} - b^*\|_{\Sigma}^2 \wedge 1 \lesssim_{d, \log n} \sqrt{\frac{p}{n}} + n^{-2/d}.$$

Proof sketch

Basic inequality:

$$\mathcal{L}(\hat{b}) - \mathcal{L}(b^*) \le \mathcal{L}(\hat{b}) - \mathcal{L}_n(\hat{b}) + \mathcal{L}_n(b^*) - \mathcal{L}(b^*).$$

► To control the LHS, we have the following inequality: for random vectors $Z \perp\!\!\!\perp \epsilon$ in \mathbb{R}^d with finite second moment and $U \sim N_d(0, I_d)$, we have

$$\langle\!\langle Z + \epsilon, U \rangle\!\rangle_{\mathcal{W}_2}^2 \ge \langle\!\langle Z, U \rangle\!\rangle_{\mathcal{W}_2}^2 + \langle\!\langle \epsilon, U \rangle\!\rangle_{\mathcal{W}_2}^2.$$

To control the RHS, we use bounds for distances between empirical and population 2-Wasserstein distances (Fournier and Guillin, 2015).

- The noise ϵ_i 's generated from one of the following distributions:
 - (i) $\epsilon_i \sim \mathcal{N}(0, I_d)$
 - (ii) $\epsilon_i \sim t_2(0, I_d)$ follows a multivariate t_2 distribution
 - (iii) ϵ_i has each marginal distributed with $\mathrm{Pareto}(-2,2,1)$ and the same copula as $\mathcal{N}(0,\Sigma')$, where $\Sigma'=(0.9^{|i-j|})_{i,j}\in\mathbb{R}^{d\times d}$
 - (iv) $\,\varepsilon$ follows a centered Banana-shaped distribution.
- We compare the average loss (matrix Mahalanobis norm) of MCQR estimator against
 - Coordinatewise CQR estimator (CoorCQR)
 - Spatial quantile regression estimator (SpQR)
 - OLS estimator

Empirical performance of MCQR estimator

Tengyao Wang

Empirical performance of MCQR estimator

- We also investigate the empirical performance of MCQR in the presence of outlier contamination. Here, we consider two cases of δ -contaminated noise, for some $\delta \in (0, 1)$:
 - (i) $\epsilon \sim (1-\delta)P_1 + \delta P_2$; here P_1 is a Pareto copula as before and P_2 is a heavier-tailed location-shifted Pareto copula with marginals distributed as Pareto(10, 2, 10).

(ii)
$$\varepsilon \sim (1 - \epsilon) \mathcal{N}(0, I_d) + \epsilon \mathcal{N}(100, I_d)$$

Gaussian contamination

- CQR optimisation has a natural OT interpretation
- This allows a multivariate generalisation
- Current theoretical control is likely suboptimal
- Empirical performance is very promising

Main reference:

Yang, X. and Wang, T. (2024) Multiple-output composite quantile regression through an optimal transport lens. COLT 2024. Thank you!

References

- Chaudhuri, P. (1996). On a geometric notion of quantiles for multivariate data. J. Amer. Statist. Assoc., 91, 862–872.
- Chernozhukov, V., Galichon, A., Hallin, M. and Henry, M. (2017). Monge-Kantorovich depth, quantiles, ranks and signs. Ann. Statist., 45, 223–256.
- Fournier, N. and Guillin, A. (2015). On the rate of convergence in Wasserstein distance of the empirical measure. Probab. Theory Related Fields, 162, 707–738.
- Ghosal, P. and Sen, B. (2022). Multivariate ranks and quantiles using optimal transport: consistency, rates and nonparametric testing. Ann. Statist., 50, 1012–1037.
- Hallin, M., Del Barrio, E., Cuesta-Albertos, J. and Matrán, C. (2021). Distribution and quantile functions, ranks and signs in dimension d: a measure transportation approach. Ann. Statist., 49, 1139–1165.
- Koenker, R. (2005). *Quantile regression*. Cambridge University Press, Cambridge.
- Paindaveine, D. and Šiman, M. (2011). On directional multiple-output quantile regression. J. Multivariate Anal., 102, 193–212.
- Zou, H. and Yuan, M. (2008). Composite quantile regression and the oracle model selection theory. Ann. Statist., 36, 1108–1126.