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Introduction

▶ Randomised control trials (RCTs) are desired to evaluate treatment effect,
but they are usually hard to implement.

▶ Causal inference methods like g-methods are needed.

▶ G-methods: inverse probability weighting with marginal structural models,
parametric g-formula, and g-estimation for structural nested models. These
are well-developed when changes occur in discrete time (e.g. Robins
g-methods[7]), but often treatments are changed on no fixed schedule.



Motivation: toy examples of treatment processes
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Figure 1: Toy examples of treatment processes.



The UK ‘Towards A CurE for rheumatoid arthritis’ (TACERA)
cohort [2]

▶ The cohort consists of newly diagnosed seropositive rheumatoid arthritis
(RA) patients who were followed up at approximately 3-month intervals for
up to 18 months.

▶ Causal question: Does high dose (≥ 15mg/day) of methotrexate affect time
to disease remission?

Alcohol 𝐵!
Symptom duration 𝐵"

Methotrexate 𝐴

Remission 𝑌

DAS28-CRP 𝐿

Censoring 𝐶

Figure 2: The local independence graph[3, 4].



Motivation cont.
▶ Challenges in time discretisation[6]:

▶ too coarse: might invalidate the causal assumptions, e.g. no unmeasured
confounding;

▶ too fined: reduce bias but increase variance, practical violation of positivity
assumption, computation burden;

▶ different discretizations can lead to different target parameters.

▶ Several continuous-time g-methods have been proposed, but literature is dispersed
and involves technical complexities, so have been little used.

Aim
To review of the existing methods to encourage adoption of their use by applied
researchers.

Overview
1. Frame the causal problem for TACERA cohort.

2. Demonstrate

▶ Continuous-time IPW-MSMs
▶ Continuous-time g-computation formula
▶ Continuous-time structural nested failure time models (SNFTMs)



TACERA

▶ Treatment: high-dose methotrexate
A(t) = 1, otherwise A(t) = 0.

▶ Baseline confounder: alcohol consumption
indicator (B1), short symptom duration
(< 5 months at baseline) indicator (B2).

▶ Time-varying confounder: 28-joint Disease
Activity Score with C-reactive protein
(DAS28-CRP): L(t) ∈ [0, 9.6].

▶ Outcome: disease remission (Y (t) = 1)
happens when L(t) < 2.6, otherwise
Y (t) = 0.

▶ Censoring[13]: C(t) = 1 if censored.

Exclude individuals who did not receive
methotraxate. Exclude those with
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missing DAS28-CRP scores or whose baseline
DAS28CRP scores < 2.6 at baseline. There are
172 individuals included in this study.
Other notation:

▶ The value of variable X just before time t:
X (t−). Let X (t) = (X (u) : u ∈ [0, t]),
X (t) = (X (u) : u ∈ [t,T ]).

▶ Time to event X : TX .

▶ Counting process for process X that
counts changes in X (t): NX (t).

▶ At-risk process GX (t) = I(t ≤ TX ) and
X (t) =

∫ t
0 GX (u)dNX (u).

▶ Filtration of X till time t:
FX (t) = σ(X (t)).

▶ Hazard function: hX (t) and intensity
process λX (t)dt = E [dNX (t) = 1|Ft−] =
P(dX (t) = 1|Ft−) = GX (t)hX (t)
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Causal Assumptions[7]

Counterfactual had treatment strategy a been given: Y a. Let P and P̃ denote
observational and hypothetical probability respectively.

▶ No unmeasured confounding: the confounder provides sufficient
information such that at any time, the present treatment is independent of
the future counterfactual given the history of confounders, past treatment,
and not censored.

λA(t|L(t),A(t−),Y a(t+),B,C (t) = Y (t) = 0) = λA(t|L(t),A(t−),B,C (t) = Y (t) = 0).

▶ Positivity: P̃ << P1 [10, 11, 19].
For P(l(t), a(t−),C (t) = Y (t) = 0,B) > 0, the hypothetical treatment has
P̃(dA(t)|a(t−),C (t) = Y (t) = 0) > 0, i.e.
λ̃A(t|a(t−),C (t) = Y (t) = 0) > 0. Then the positivity assumption requires
P(dA(t)|l(t), a(t−),C (t) = Y (t) = 0,B) > 0, i.e
λA(t|l(t), a(t−),C (t) = Y (t) = 0,B) > 0.

▶ Consistency:

If A(t−) = a(t−) then Y (t) = Y
a
(t).

1This ensures Radon-Nikodym derivative dP̃
dP

exists.



IPW-MSMs

▶ Idea: create a pseudo-population that mimics a situation under
randomisation [12].

▶ Weight[10]:

R(tk) =
k∏

u=0

P(A(tu)|Ā(tu−1),T
Y ≥ u)

P(A(tu)|Ā(tu−1), L̄(tu),B,TY ≥ tu)
=

k∏
u=1

{
λ̃A(tu)

λA(tu)

}∆NA(tu)
∏k

u=1

{
1− λ̃A(tu)

}1−∆NA(tu)

∏k
u=1 {1− λA(tu)}1−∆NA(tu)

R(t) =
∏
u≤t

{
λ̃A(u)

λA(u)

}dNA(u)

exp

{∫ t

0

λA(s)− λ̃A(s)ds

}
(1)

▶ Marginal mean model:

h̃Y (t|a(t−)) = EP̃

(
dNY (t)|A(t−) = a(t−)

)
. (2)



IPW-MSMs
▶ Model fitting:

marginal treat-
ment hazard

conditional treatment hazard outcome hazard

Additive
hazard
model[10,
13]

hA(t) = β0(t) hA(t) = β0(t) + β1B1 +
β2B2 + β3(t)L(t)

h̃Y (t) = γ0(t) +
γ1(t)A(t−)

Cox-PH
model[5]

hA(t) = hA0 (t) hA(t) = ha0(t) ×
exp(β1B1 + β2B2 +
β3L(t))

h̃Y (t) =
h0(t) exp (γ1A(t−))

Case-base
sampling[5,
14, 15]

logit(hA(t)) = β0 +∑
k∈{1,2} β1k (t) + f A

logit(hA(t)) = β0 +
β1B1 +β2B2 +β3L(t)+∑

k∈{1,2,3} β5k (t) + f A

logit(h̃Y (t)) =
γ0 + γ1A(t−) +∑

k∈{1,2,3} γ2k (t) + f Y

Table 1: Models fitted for the treatment process and outcome process.

▶ Weight estimation:

Additive Recursively estimated by the Doléans-Dade theorem [1, 17]2(R package ahw)
Cox Breslow estimator for cumulative baseline hazard

Case-base multiplication

Table 2: Ways to estimate R(t).

2
Ri,A(t) = R

i,A
0

+
∫ t
0 Ri,A(s−)dKi (s), Ki (t) =

∫ t
0 (θi,A(s) − 1)dNi,A(s) +

∫ t
0 Gi,A(s)Xi (s)T dB(s) −

∫ t
0 Gi,A(s)X̃ i (s)T dB̃(s)



IPW-MSM
Causal parameters:

▶ Additive: H0 : γ1(t) = 0 with P-value being 0.033; H0 : γ1(t) = γ for some
constant γ with p-value being 0.178.

▶ Cox: The causal parameter γ̂1 = 0.279 with p-value 0.119.

▶ Case-base: The causal parameter γ̂1 = 0.338 with p-value 0.091.

Additive Cox Case−base
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Figure 3: Survival curves estimated using IPW-MSMs with additive hazard models, Cox
models, and case-base sampling methods.

High-dose methotrexate is beneficial for remission of RA. Earlier treatment
initiation leads to higher probability of remission over time, but the evidence is in
not strong in general.



IPW-MSMs: covariate balance diagnostics
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Figure 4: Aggregated standardised mean difference (SMD) and Absolute SMD 3.
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Figure 5: Absolute SMD scores for DAS28-CRP scores: nonsmoothed vs smoothed by
kernel regression.

3
sL(ta, tl ) =(

E[R(ta)L(tl )I(A(ta) = 1)|A(ta−) = 0, C(ta) = Y (ta) = 0] − E[R(ta)L(tl )I(A(ta) = 0)|A(ta−) = 0, C(ta) = Y (ta) = 0]
)
/σpool (ta, tl )



Parametric g-formula

EP̃ [dN
Y (T )] =

∫ T

0

∫
l(t)

λY (u; L(u−), a(u−),B) P
0<s<u

(
1− λY (s; L(s−), a(s−),B)

)
×

P
0<s≤u

(
λL(s; L(s−), a(s−),B)P(L(s)|L(s−), a(s−),B)

)dNL(t)

(
1− λL(s; L(s−), a(s−) = 0,B)

)1−dNL(t)

P(L(0),B)λ̃A(s|a(s−), l(s),B)dldu.

(3)

Multistates model!

▶ Artificially manipulate the transition intensities to impose the intervention.

▶ The transition matrix P̃(s, t) = Ps<ti≤t(I + dΛ̃(ti )).



Parametric g-formula

▶ Categorise L(t) into three levels: remission (L(t) ∈ (0, 2.6]), mild condition
(L(t) ∈ (2.6, 5.1]), severe condition (L(t) ∈ (5.1, 9.6)).

▶ Compare a = 1 with a = 0.

 

 
 

𝑆#:Mild condition 
with high dose

𝑆$:Mild condition 
with low dose

𝑆%: Remission

𝑆": Severe condition 
with low dose

𝑆!: Severe condition 
with high dose

Figure 6: Multi-state diagram for TACERA study.



Parametric g-formula

a = 1:

λ̃
1(t) =


0 0 0 0 0
0 0 0 0 0
0 0 −(λ34(t) + λ35(t)) λ34(t) λ35(t)
0 0 λ43(t) −(λ43(t) + λ45(t)) λ45(t)
0 0 0 0 0

 . (4)

𝑆!:	Sever condition 
with high dose

𝑆":	Sever condition 
with low dose

𝑆#:	Mild condition 
with high dose

𝑆$:	Mild condition 
with low dose

𝑆%: Remission

Figure 7: Multi-state diagram for TACERA study.



Parametric g-formula

a = 0:

λ̃
0(t) =


−(λ12(t) + λ15(t)) λ12(t) 0 0 λ15(t)

λ21(t) −(λ21(t) + λ25(t)) 0 0 λ25(t)
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

 . (5)

𝑆!:	Sever condition 
with high dose

𝑆":	Sever condition 
with low dose

𝑆#:	Mild condition 
with high dose

𝑆$:	Mild condition 
with low dose

𝑆%: Remission

Figure 8: Multi-state diagram for TACERA study.



Parametric g-formula
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Figure 9: The estimated transition probabilities by g-formula with the multi-states
model using mstate R package.



Parametric g-formula
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Figure 10: Comparing survival curves estimated by different methods for different
treatment initiation times.



SNFTMs

Let Y ,C denote time to remission and censoring.

▶ Idea: model the effect of skipping the “last” treatment given the past
▶ baseline treatment: a = 0
▶ at t, we consider removing an “instantaneous blip” – that is removing the

treatment a(t) – on [t, t + h) with h > 0 and h ↓ 0. We contrast two
treatment regimes:

a[0,t+h) = (a((t + h)−), 0(t + h)) (6)

a[0,t) = (a(t−), 0(t)) (7)

with h ↓ 0.
▶ SNMs model the infinitesimal effect of the treatment given in [t, t + h) as

h ↓ 0 by comparing the following counterfactuals in distribution:

Y a[0,t+h) |A(t) = a(t), L(t),B (8)

Y a[0,t) |A(t) = a(t), L(t),B. (9)

▶ Model the effect of skipping a(t) at t given the past, define the
distributional relationship

F
Y

a[0,t+h) |A(t)=a(t),L(t),B
(yt+h) = F

Y
a[0,t) |A(t)=a(t),L(t),B

(yt) (10)



SNFTMs

Figure 11: Illustration of D [8]

yt+h − yt
h

=
F−1

Y
a[0,t+h) |A(t)=a(t),L(t),B

◦ F
Y

a[0,t) |A(t)=a(t),L(t),B
(yt)− yt

h
(11)

which, with h ↓ 0, can be formulated as

D(y , t;A(t), L(t),B) =
∂

∂h

∣∣∣∣∣
h=0

(
F−1

Y
A[0,t+h) |A(t),L(t),B

◦ F
Y

A[0,t) |A(t),L(t),B

)
(y).

(12)
This is the infinitesimal shift function.



SNFTMs
Define a continuous variable Y(t) that mimics Y a[0,t):

Y(t) ∼ Y a[0,t)|A(t), L(t),B
dY(t)

dt
= D(Y(t), t;A(t), L(t),B)

with Y(T ) = Y .
For survival outcomes, [9] suggested

Dψ(y , t;A(t), L(t),B) = (1− exp (γψ(y , t;A(t), L(t),B)))Iy>t (13)

The form of (13) ensures D < 1 that avoids infinite survival time.

Y 0 ∼ Y(0) =

∫ Y

0

exp(ψA(s))ds. (14)

In this special case, the residual lifetime had treatment been stopped at t given
past observations has the same distribution as the residual lifetime had treatment
being continued till the end of study multiplied by a factor exp (ψ).

▶ Problem of artificial censoring: Cψ =
∫ C

0
exp (ψA(t))dt, let

Xψ = min{Cψ,Yψ}, Xψ =
∫ X

0
exp (ψA(t))dt.

▶ if counterfactual failure comes after counterfactual censoring for individuals
who are observed to fail, then this raises the problem of artificial censoring
where observed failures are artificially censored → information loss,
nonsmoothness in estimation function.



G-estimation

▶ Sequentially “blipping off” treatment backwards =⇒ a random variable
X (0) mimicking X 0

▶ Fitting a model for Pθ(A(t)|L(t),A(t−),Xψ) with parameters θ, under no
unmeasured confounding assumption, the coefficient of Xψ should 0. – Grid
search or solving estimating equation.

▶ An unbiased estimating equation can be constructed to estimate ψ.
Martingale theory guides the formulation of such an estimating equation by

defining a σ(A(t),Z (t),Y
A[0,t)

)-predictable process

ht(Y
A[0,t−) ,A(t−),Z (t−)) with regularity conditions.

Pn

∫ τ

0

ht(Xψ(t),A(t), L(t),B)(dNA(t)− λAθ (t)dt) = 0, (15)

where PnX = 1/n
∑n

i=1 Xi is the empirical measure.

▶ Doubly robust estimator see [18]4

▶ The causal parameter exp(ψ) has a closed form.

4

E
{

∆

P(C > X|Z(X ), A(X ))

∫ τ
0

ceff (t, Z(t), A(t−))
[
Xψ − E[Xψ|Z(t), A(t−) = 0, V ≥ t]

]
dMA(t)

}
= 0, (16)

where ∆ = I(Y > C), V = min{TA, C, Y} and {V ≥ t} = {TA ≥ t, C ≥ t, Y ≥ t}.



SNFTMs and G-estimation

▶ Fitting a Cox-PH model for the hazard of treatment initiation:
hA(t) = hA0 (t) exp (β0 + β1B1 + β2B2 + β3L(t)), then derive the martingale

via dM̂A(t) = dNA(t)− ĥA(t)GA(t). Secondly, fit a Cox-PH model for the
censoring process to estimate the hazard of censoring:
hC (t) = hC0 (t) exp (ν0 + ν1B1 + ν2B2 + ν3L(0)) and estimate

P̂(C > XZ (X ),A(X )) = exp (−
∫ X

0
ĥC (t)GC (t)dt).

▶ exp(ψ̂) = 1.388,p-value= 0.025. Time to remission would be prolonged by a
factor of 1.388 had the treatment not initiated compared to initiated from
the beginning of follow-up. Note that IPCWs appear to be unstable.
Extremely large weights frequently appear when estimating the parameter for
each bootstrapped sample. We truncate the censoring weights larger than
10.



Summary

▶ A conceptual comparison:

IPW-MSMs SNFTMs& g-estimation Parametric g-formula

Interpretability ✓✓ ✓ ✓
Software available ✓✓ ✓ ✗
Existing application ✓✓ ✓ ✗

Robust to model misspecification ✓ ✓ ✗
Robust to violation of positivity ✗ ✓✓ ✗

Censoring ✓✓ ✓ ✗

Table 3: Comparison of three methods in continuous-time setting with time-varying treatment and time-varying confounding. Strength is ranked
from high to low, indicated by ✓✓,✓ respectively. ✗ labels the weakness or non-published area.

▶ A quantitative comparison is rarely studied.

▶ Gaps:

▶ simulation [16];
▶ complicated treatment processes;
▶ issues of positivity assumption violation, artificial censoring.
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